Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

PhD Defence

Maxime Gamboni

Instituto de Telecomunicações, Instituto Superior Técnico, Portugal

December 17th, 2010
Plan

- Statically Proving
- Behavioural Properties
- in the π-calculus
- via Dependency Analysis
Context: Request & Answer
Context: Proxy
Statically vs Dynamical Analysis

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Definition (Model Checking)
Finding Properties by simulating execution

Definition (Statically Analysis)
Finding Properties without running the program
Statically vs Dynamical Analysis

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Definition (Model Checking)
Finding Properties by simulating execution

Definition (Statical Analysis)
Finding Properties without running the program
Statically vs Dynamical Analysis

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Definition (Model Checking)
Finding Properties by simulating execution

Definition (Statical Analysis)
Finding Properties without running the program
Model Checking

Finding/Verifying properties by simulating execution
Type Systems

Finding/Verifying properties without running the program

My Type Inference System

\[\Sigma \vdash \alpha : \sigma \rightarrow \Sigma ; \Xi \vdash \chi \rightarrow (\Sigma ; \Xi) \]
Type Systems

Finding/Verifying properties without running the program

My Type Inference System

\[
\begin{array}{c}
\Sigma \vdash \sigma_0 : \sigma_c \\
\downarrow
\end{array}
\Rightarrow
\left(\Sigma ; \equiv_{\psi} : \equiv_c \right)
\]
Type Systems

Finding/Verifying properties without running the program

My Type Inference System

\(\Sigma ; \xi_1 : \sigma_1 ; \xi_2 : \sigma_2 \rightarrow \Gamma \chi \rightarrow (\Sigma ; \xi_1 ; \xi_2) \)
Type Systems

Finding/Verifying properties without running the program

My Type Inference System

$$\Sigma \triangleright \chi \rightarrow (\Sigma; \Xi; \Xi)$$
Statically Proving **Behavioural Properties** in the π-calculus via Dependency Analysis

Examples
- Activeness (Receptiveness)
- Isolation
Behavioural Properties

Statically Proving **Behavioural Properties** in the π-calculus via Dependency Analysis

Examples

- Activeness (Receptiveness)
- Isolation
Behavioural Properties

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Examples

- Activeness (Receptiveness)
- Isolation
Behavioural Properties: Existential vs Universal

Definition (Existential Property)
Available *somewhere*. Good things happen *eventually*.

E.g. “Activeness”

Definition (Universal Property)
Available *everywhere*. Good things happen *constantly*.

E.g. “Isolation”
Behavioural Properties: Existential vs Universal

Definition (Existential Property)
Available *somewhere*. Good things happen *eventually*.

E.g. “Activeness”

Definition (Universal Property)
Available *everywhere*. Good things happen *constantly*.

E.g. “Isolation”
The π-calculus

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

\[
\begin{align*}
&\text{Repeat} \quad \text{“New”} \\
&\ !n(xy) \cdot (\nu tf) (\overline{a} \langle tf \rangle \mid (t.y + f.x))
\end{align*}
\]

Repeat, "New", Concurrency, Receive, Sequence, Send, Choice
The π-calculus

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

\[\! n(xy) . (\nu t f) (\bar{a}\langle tf \rangle | (t.\bar{y} + f.\bar{x})) \]
The π-calculus

Example

$\bigcirc (qr) . \overline{\nabla} (qr') . r'(a) . \overline{r}(a)$
Dependency Analysis

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Definition (Dependency $A \triangleleft B$)

If you give me B, I’ll give you A.

\bigcirc is isolated if ∇ is isolated

$(\bigcirc_1) \triangleleft (\nabla_1)$
Dependency Analysis

Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis

Definition (Dependency $A \triangleleft B$)

If you give me B, I’ll give you A.

- \bigcirc is isolated if ∇ is isolated

$(\bigcirc_1) \triangleleft (\nabla_1)$
Dependency Analysis

Definition (Dependency $A \preceq B$)

If you give me B, I'll give you A.

○ is isolated if ▼ is isolated

$(\bigcirc_1) \preceq (\nabla_1)$
Dependency Analysis

Definition (Dependency \(A \bowtie B \))

If you give me \(B \), I’ll give you \(A \).

\[\bigcirc \text{ is isolated if } \triangledown \text{ is isolated} \]

\[(\bigcirc_1) \bowtie (\triangledown_1) \]
Generic Type System

- Not specific to a property

Instantiation:
- Write semantic goals
- Rules parametrised by elementary rules
Generic Type System

- Not specific to a property

Instantiation:
- Write *semantic goals*
- Rules *parametrised by elementary rules*
Generic Type System

- Not specific to a property

Instantiation:

- Write *semantic goals*

- Rules *parametrised by elementary rules*
Generic Type System

- Not specific to a property

Instantiation:

- Write *semantic goals*
- Rules *parametrised by elementary rules*
Contributions

<table>
<thead>
<tr>
<th>Type Language</th>
<th>Process Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection & Branching</td>
<td>Choice</td>
</tr>
<tr>
<td>Activeness</td>
<td>Liveness</td>
</tr>
<tr>
<td>Determinism, Isolation, ...</td>
<td>Safety</td>
</tr>
<tr>
<td>Dependencies</td>
<td>Causality</td>
</tr>
</tbody>
</table>

Generic Type System:
- Decidable
- Constructs Logical Formulae
- Sound
- Compositional
Conclusion

“Statically Proving Behavioural Properties in the π-calculus via Dependency Analysis”
Questions
Supplementary Material

- Types & Multiplicities
- Choice
- Algebra
- Semantics
- Type Systems
- Properties
- Soundness
- Future Work
Types & Multiplicities

Behavioural Statements Δ, Ξ, ...

- $\Delta ::= \ldots$
- $\Delta \lor \Delta$
- $\Delta + \Delta$
- $\Delta \land \Delta$
- $\Delta \triangleleft \Delta$
- p_k
- \bot
- \top
- p^m

Multiplicities

- $m ::= 0 | 1 | \omega | \star$
Choice

Definition (Selection $A \lor B$)
I will either behave like A or like B

Definition (Branching $A + B$)
You can make me do A or B
Choice

Definition (Selection $A \lor B$)
I will either behave like A or like B

Definition (Branching $A + B$)
You can make me do A or B
Choice

Definition (Selection \(A \lor B \))

I will either behave like \(A \) or like \(B \)

Definition (Branching \(A + B \))

You can make me do \(A \) or \(B \)
Choice Examples (I)

- Data Encodings

\[b := \text{True} \quad \overset{\text{def}}{=} \quad !b(tf).\overline{t} \]

\[b := \text{False} \quad \overset{\text{def}}{=} \quad !b(tf).\overline{f} \]

\[\text{If } b \text{ Then } P \text{ Else } Q \quad \overset{\text{def}}{=} \quad \overline{b}(\nu tf).(t.P + f.Q) \]
Choice Examples (II)

- Client-Server Conversations

\[
\prod(v_s).s(more, done).\text{more}(v_s, 2).
\]
\[
s(more, done).\text{more}(v_s, 5).
\]
\[
s(more, done).\text{done}(v_s).s(x).\text{print}\langle x \rangle
\]

\[
!\prod(s).\overline{p_0}\langle 1, s \rangle \mid !p_0(t, s).\overline{s}(v\more, done).
\]
\[
(more(s, n).\overline{p_0}\langle t \times n, s \rangle + \text{done}(s).\overline{s}\langle r \rangle)
\]
Algebra

Spatial Operators
- Parallel Composition $\Gamma_1 \odot \Gamma_2$
- Restriction $(\nu x)\Gamma$

Logical Operators
- Equivalence \cong
- Weakening \trianglelefteq
- Reduction \leftrightarrow

Dynamic Operator
- Transition Operator $\Gamma \xrightarrow{\mu} (\Gamma \triangledown \mu)$
Definition (Universal Semantics)

A \((\Gamma; P) \) typed process is correct wrt. universal semantics (\(\Gamma \models_{\mathcal{U}} P \)) if, for all transition sequences (\(\Gamma; P \xrightarrow{\tilde{\mu}} (\Gamma'; P') \)), the local component of \(\Gamma' \) being \(\bigvee_{i \in I} p_i k_i \triangleleft \varepsilon_i \): for all \(i \in I \) with \(k_i \in \mathcal{U}, \text{good}_{k_i}(p_i \triangleleft \varepsilon_i, (\Gamma'; P')) \) holds.
Semantics (Existential)

(abbreviated) Existential Semantics

A typed process \((\Gamma; P)\) is correct \(\text{("}\Gamma \models P\text{"})\), if \(\exists\) a strategy \(f\) s.t.

For any sequence

\((\Gamma; P) = (\Gamma_0; P_0) \cdot \cdot \cdot \xrightarrow{\tilde{\mu}_i} (\Gamma'_i; P'_i) \xrightarrow{f} (\Gamma_{i+1}; P_{i+1}) \cdot \cdot \cdot\), let (for all \(i\)) \(\mu_i\) be the label of \((\Gamma'_i; P'_i) \xrightarrow{f} (\Gamma_{i+1}; P_{i+1})\).

Then \(\exists\) a resource \(p_k\) and \(n \geq 0\) such that:

1. \(\forall i : (p_k \triangleleft \text{dep}_K(\mu_i)) \leq \Gamma'_i\)

2. \(\exists \varepsilon : (p_k \triangleleft \varepsilon) \leq \Gamma_n\) and \(\text{good}_k(p \triangleleft \varepsilon, (\Gamma_n; P_n))\).
Type System (Universal)

\[
\forall i : \Gamma_i \vdash \kappa P_i \quad \Rightarrow \quad \Gamma_1 \otimes \Gamma_2 \vdash \kappa P_1 | P_2 \quad (U-PAR)
\]

\[
\Gamma \vdash \kappa P \quad \Gamma(x) = \sigma \quad \Rightarrow \quad (\nu x) \Gamma \vdash \kappa (\nu x : \sigma) P \quad (U-RES)
\]

\[
\forall i : (\sum_i; \Xi_{Li} \downarrow \Xi_{Ei}) \vdash \kappa G_i P_i \quad \Xi_E \leq \bigwedge_i \Xi_{Ei} \quad \Rightarrow \quad \bigwedge_i \Xi_{Li} \downarrow \Xi_E \quad \vdash \kappa \sum_i G_i P_i \quad (U-SUM)
\]

\[
\Gamma \vdash \kappa P \quad \text{sub}(G) = p \quad \text{obj}(G) = \tilde{x} \quad \Rightarrow \quad \left(p : \sigma; \blacktriangleleft \; \sigma^m \wedge \bar{p}^{m'} \right) \quad \circ \quad \left(; p\#(G) \blacktriangleleft \right) \quad \circ \quad !\text{if} \; \#(G) = \omega \left(\nu \text{bn}(G) \right) \left(\Gamma \quad \circ \quad \sigma[\tilde{x}] \quad \circ \quad \bigwedge_{k \in \kappa} \text{prop}_k(\sigma, G, m, m') \blacktriangleleft \right) \quad \vdash \kappa G.P \quad (U-PRE)
\]
Type System (Existential)

\[\forall i : \Gamma_i \vdash \kappa \ P_i \quad (\text{E-PAR}) \]
\[\Gamma \vdash \kappa \ P \quad (\nu x) \Gamma \vdash \kappa \ (\nu x : \sigma) \ P \quad (\text{E-RES}) \]

\[\forall i : (\Sigma_i ; \Xi_{Li} \triangleright \Xi_{Ei}) \vdash \kappa \ G_i.P_i \]
\[\Xi_E \leq \bigwedge_i \Xi_{Ei} \quad (\text{E-SUM}) \]

\[\Gamma \vdash \kappa \ P \quad \text{sub}(G) = p \quad \text{obj}(G) = \bar{x} \quad (\text{E-PRE}) \]
\[\left(p : \sigma ; \triangleright p^m \land \bar{p}^{m'} \right) \quad \circ \]
\[\left(; p^\#(G) \triangleright \right) \quad \circ \]
\[\text{! if } \#(G) = \omega \left(\nu \text{bn}(G) \right) \left(\Gamma \triangleright \text{dep}_\kappa (G) \right) \quad \circ \]
\[\bar{\sigma}[ar{x}] \triangleright (\text{dep}_\kappa (G) \land \bar{p}_R) \quad \circ \]
\[(; \bigwedge_{k \in \kappa} \text{prop}_k(\sigma, G, m, m') \triangleright) \quad \vdash \kappa \ G.P \]
Properties

- **A** — Activeness

 \[
 \text{prop}_A(G, \sigma, m, m') = \begin{cases}
 \text{sub}(G)_A & \text{if } \#(G) = \omega \text{ or } m' \neq \star \\
 \top & \text{otherwise}
 \end{cases}
 \]

- **R** — Responsiveness
- **D** — Determinism (Functionality)
- **I** — Isolation
- **df** — Lock-Freedom
- **N** — Non-Reachability
- **ϖ** — Termination
Properties

- **A** — Activeness
- **R** — Responsiveness

\[
\text{prop}_R(\sigma, G, m, m') = \text{sub}(G)_{\not\triangleleft} \left\{ \begin{array}{ll}
\sigma[\text{obj}(G)] & \text{if } G \text{ is an input} \\
\overline{\sigma}[\text{obj}(G)] & \text{if } G \text{ is an output}
\end{array} \right.
\]

- **D** — Determinism (Functionality)
- **I** — Isolation
- **df** — Lock-Freedom
- **N** — Non-Reachability
- **ϖ** — Termination
Properties

- **A** — Activeness
- **R** — Responsiveness
- **D** — Determinism (Functionality)

\[\varphi_D(\sigma, G, m, m') \overset{\text{def}}{=} \begin{cases} \bot & \text{if } \star \in \{m, m'\} \text{ and } \omega \notin \{m, m'\} \\ \text{sub}(G)_D & \text{otherwise} \end{cases} \]

\[\varphi_D(\{p_i\}_i, \Xi) \overset{\text{def}}{=} \begin{cases} \bot & \text{if } \Xi \text{ has concurrent environment } p_i \\ \top & \text{otherwise} \end{cases} \]

- **I** — Isolation
- **df** — Lock-Freedom
- **N** — Non-Reachability
- **ϖ** — Termination
Properties

- **A** — Activeness
- **R** — Responsiveness
- **D** — Determinism (Functionality)
- **I** — Isolation

\[\varphi_I(\sigma, G, m, m') = \text{sub}(G)_I \]

- **df** — Lock-Freedom
- **N** — Non-Reachability
- **\(\varpi\)** — Termination
Properties

- **A** — Activeness
- **R** — Responsiveness
- **D** — Determinism (Functionality)
- **I** — Isolation
- **df** — Lock-Freedom

\[\text{prop}_{\text{df}}(G, \sigma, m, m') = \text{proc}_{\text{df}} < \text{sub}(G) \]

- **N** — Non-Reachability
- **\(\omega\)** — Termination
Properties

- A — Activeness
- R — Responsiveness
- D — Determinism (Functionality)
- I — Isolation
- df — Lock-Freedom
- N — Non-Reachability

\[
\text{prop}_N(G, \sigma, m, m') \overset{\text{def}}{=} \text{sub}(G)_N \triangleleft \perp
\]

- \(\upomega \) — Termination
Properties

- **A** — Activeness
- **R** — Responsiveness
- **D** — Determinism (Functionality)
- **I** — Isolation
- **df** — Lock-Freedom
- **N** — Non-Reachability
- **ϖ** — Termination

\[\text{prop}_N(G, \sigma, m, m') \overset{\text{def}}{=} \text{sub}(G)_N \not\!\!\not\!\!\not\!\!\not\!\!\not\downarrow \land \tau_N \not\!\!\not\!\!\not\!\!\not\!\!\not\not\!\!\not\!\!\not\downarrow \text{sub}(G)_N \]
Universal Soundness

- Based on transition sequences?
 Semantic Predicates aren’t transition based!

- Based on contextual semantics?
 “$\Delta_1 \vdash \Delta_2 \models P$ if $\forall Q$ s.t. $\Delta_2 \vdash Q$: $\Delta_1 \models P \mid Q$.”
 The definition is circular!

- Implicit definition?
 “The set of correct typed processes is the largest that satisfies the above”
 There are many solutions!

- Stricter implicit definition?
 “The set of correct typed processes is the intersection of all those that satisfy the above”
 The intersection is empty!

- To be continued . . .
Universal Soundness

- Based on transition sequences?
 Semantic Predicates aren’t transition based!

- Based on contextual semantics?
 “Δ₁ ≤ Δ₂ |⇒ P if ∀Q s.t. Δ₂ ⊨ Q: Δ₁ |⇒ P | Q.”
 The definition is circular!

- Implicit definition?
 “The set of correct typed processes is the largest that satisfies the above”
 There are many solutions!

- Stricter implicit definition?
 “The set of correct typed processes is the intersection of all those that satisfy the above”
 The intersection is empty!

- To be continued . . .
Universal Soundness

- Based on transition sequences?
 Semantic Predicates aren’t transition based!
- Based on contextual semantics?
 “Δ₁ ⊨ Δ₂ |≡ P if ∀ Q s.t. Δ₂ ⊨ Q: Δ₁ ⊨ P | Q.”
 The definition is circular!
- Implicit definition?
 “The set of correct typed processes is the largest that satisfies the above”
 There are many solutions!
- Stricter implicit definition?
 “The set of correct typed processes is the intersection of all those that satisfy the above”
 The intersection is empty!
- To be continued . . .
Universal Soundness

- Based on transition sequences?
 Semantic Predicates aren’t transition based!

- Based on contextual semantics?
 “$\Delta_1 \ll \Delta_2 \models P$ if $\forall Q$ s.t. $\Delta_2 \vdash Q: \Delta_1 \models P \mid Q$.”
 The definition is circular!

- Implicit definition?
 “The set of correct typed processes is the largest that satisfies the above”
 There are many solutions!

- Stricter implicit definition?
 “The set of correct typed processes is the intersection of all those that satisfy the above”
 The intersection is empty!

- To be continued . . .
Universal Soundness

- Based on transition sequences?
 Semantic Predicates aren’t transition based!

- Based on contextual semantics?
 \[\Delta_1 \prec \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P | Q. \]
 The definition is circular!

- Implicit definition?
 “The set of correct typed processes is the largest that satisfies the above”
 There are many solutions!

- Stricter implicit definition?
 “The set of correct typed processes is the intersection of all those that satisfy the above”
 The intersection is empty!

- To be continued . . .
Universal Soundness

- Based on transition sequences?
 Semantic Predicates aren’t transition based!

- Based on contextual semantics?
 “$\Delta_1 \triangleleft \Delta_2 \models P$ if $\forall Q$ s.t. $\Delta_2 \vdash Q$: $\Delta_1 \models P \mid Q$.”
 The definition is circular!

- Implicit definition?
 “The set of correct typed processes is the largest that satisfies the above”
 There are many solutions!

- Stricter implicit definition?
 “The set of correct typed processes is the intersection of all those that satisfy the above”
 The intersection is empty!

- To be continued . . .
Existential Soundness

Structural Liveness Strategies

\[
\rho ::= \pi \delta \mid l \mid \ldots
\]
\[
\delta ::= \div \rho \mid [s]
\]
\[
\pi ::= (l|\rho) \mid (l|\bullet) \mid (\bullet|\rho)
\]
\[
s ::= p_1 + p_2 + p_3 \ldots
\]

\(l\): Guard reference

\(\bullet\): Environment

\((l|\rho)\): Make \(l\) and \(\rho\) communicate.
Future Work

- Generic Universal Soundness Proof
- Recursivity and Bounded Channels.
- Channel Type Reconstruction.
- Software Implementation.
<table>
<thead>
<tr>
<th>Statically</th>
<th>Behavioural</th>
<th>π-calculus</th>
<th>Dependency</th>
</tr>
</thead>
</table>

- Link to Appendices