If you are in a hurry

SPOILER WARNING: Plot and/or ending details follow.

\[
\begin{align*}
\frac{}{\emptyset \vdash 0} \quad & (\text{NIL}) \\
\frac{A \vdash \pi P \quad A \leq A'}{A' \vdash \pi P} \quad & (\text{WEAK}) \\
\frac{}{A' \vdash_p P} \quad & (\text{REP}) \\
\frac{i = 1, 2 : A_i \vdash \pi P_i}{A_1 \odot A_2 \vdash \pi P_1 | P_2} \quad & (\text{PAR}) \\
\frac{A \vdash \pi P}{\forall l : \text{md}(\Sigma_A(l)) \notin \{\downarrow_1, \uparrow_1, \downarrow_{\omega_0}\}} \quad & (\text{RES}) \\
\frac{p.(\nu \tilde{x}) \left(p : ((\tilde{\sigma})^p, \rho) + \rho(\tilde{x} : \tilde{\sigma}) \odot A\right) \vdash_p p(\tilde{x}).P}{A \vdash \pi P} \quad & (\text{INP}_p) \\
\frac{(\nu \tilde{x}) \left(l : ((\tilde{\sigma})^{\downarrow_1}, \rho, \emptyset, (\tilde{x})) + l.\hat{\rho}(\tilde{x} : \tilde{\sigma}) \odot l.A\right) \vdash \pi l(\tilde{x}).P}{A \vdash \pi P} \quad & (\text{INP}_1) \\
\frac{(\nu \tilde{x}) \left(u : ((\tilde{\sigma})^{\downarrow_{\omega_0}}, \rho, \emptyset, (\tilde{x})) + u.\rho(\tilde{x} : \tilde{\sigma}) \odot u.A\right) \vdash u(\tilde{x}).P}{A \vdash \pi P} \quad & (\text{INP}_\omega) \\
\frac{\uparrow_{\omega} \not\in \text{md}(\tilde{\sigma}) \quad \forall l : \text{md}(\Sigma_A(l)) \notin \{\downarrow_1, \uparrow_1, \downarrow_{\omega_0}\}}{p.(p : ((\tilde{\sigma})^p, \rho) + \overline{\rho}(\tilde{x} : \tilde{\sigma}) \odot A) \vdash_p \overline{p}(\tilde{x}).P} \quad & (\text{OUT}_p) \\
\frac{l : ((\tilde{\sigma})^{\uparrow_1}, \rho, \emptyset, \emptyset, (\tilde{x})) + l.\check{\rho}(\tilde{x} : \tilde{\sigma}) \odot l.A \vdash \pi l(\tilde{x}).P}{A \vdash \pi P} \quad & (\text{OUT}_1) \\
\frac{u : ((\tilde{\sigma})^{\uparrow_{\omega}}, \rho) + u.\check{\rho}(\tilde{x} : \tilde{\sigma}) \odot u.A \vdash \pi u(\tilde{x}).P}{A \vdash \pi P} \quad & (\text{OUT}_\omega)
\end{align*}
\]
Deciding Deterministic Responsiveness and Closeness in π-calculus

Maxime Gamboni

Insituto Superior Técnico

June 27, 2006
Teach Yourself Polyadic π-Calculus in 4 Minutes (I)

- Model for Communication & Concurrency
- Based around Named Channels
Teach Yourself Polyadic π-Calculus in 4 Minutes (I)

- Model for Communication & Concurrency
- Based around Named Channels

Two kinds of things are done in π.

- Sending something (ξ) over a channel (a): $\overline{a}(\xi).P$
- Receiving something on a channel (a), and referring to it as x afterwards: $a(x).P$
Some other constructs: $P_1 | P_2$, $(\nu x) P$, $! P$, 0

E.g. $a(s) | a(x).\bar{x} \rightarrow 0 | \bar{s}$
Teach Yourself Polyadic π-Calculus in 4 Minutes (II)

- Some other constructs: $P_1|P_2$, $(\nu x) P$, $! P$, 0

E.g. $\bar{a}(s) | a(x).\bar{x} \rightarrow 0 | \bar{s}$

- *POLY*-adic: More than one name can be moved around at a time

E.g. $\bar{a}(x, y, z).P$
Higher level languages can be encoded into π:

\[
\llbracket \bar{a}\langle \xi \rangle \rrbracket \overset{\text{def}}{=} \bar{a}\langle u \rangle . \! u(\bar{r}). \cdots \]

server for ξ
Higher level languages can be encoded into π:

$$\llbracket \overline{a}(\xi) \rrbracket \overset{\text{def}}{=} \overline{a}\langle u \rangle . \overline{u(\overline{r})}. \cdots$$

server for ξ

We want Full Abstraction:

$$(P \approx Q) \iff (\llbracket P \rrbracket \approx_r \llbracket Q \rrbracket)$$
These two (high level) processes are \textit{bisimilar}

\[
P = a(b).\text{if}(b)(\text{if}(\neg b)\text{ print } \text{OOPS}; \text{ else print } \text{OK};) \\
Q = a(b).\text{print } \text{OK};
\]
The two (high level) processes are bisimilar:

\[
P = a(b).\text{if}(b)(\text{if}(\neg b) \text{print } OOPS; \text{else print } OK;)
\]

\[
Q = a(b).\text{print } OK;
\]

Yet their encoded forms are not.

We also need to enforce:
\approx_R is not a Regular Bisimulation

- These two (high level) processes are *bisimilar*

 $P = a(b).\text{if}(b)(\text{if}(\neg b) \text{ print } OOPS; \text{ else print } OK;)$

 $Q = a(b).\text{print } OK;$

- Yet their encoded forms are not.

- We also need to enforce:

 Determinism,
These two (high level) processes are \textit{bisimilar}

\[
P = a(b).\text{if}(b)(\text{if}(\neg b)\text{ print } OOPS; \text{ else }\text{ print } OK;)\]
\[
Q = a(b).\text{print } OK;
\]

Yet their encoded forms are not.

We also need to enforce:
\begin{itemize}
\item \textit{Determinism},
\item \textit{Closeness},
\end{itemize}
These two (high level) processes are *bisimilar*

\[P = a(b).\text{if}(b)(\text{if}(\neg b)\text{ print } OOPS;\text{ else print } OK;) \]
\[Q = a(b).\text{print } OK; \]

Yet their encoded forms are not.

We also need to enforce:

Determinism, Closeness, Responsiveness
\(\approx_R \) is not a Regular Bisimulation

- These two (high level) processes are bisimilar

 \[P = a(b).\text{if}(b)(\text{if}(!b) \text{ print } OOPS; \text{ else } \text{ print } OK;) \]

 \[Q = a(b).\text{print } OK; \]

- Yet their encoded forms are not.

- We also need to enforce:

 Determinism, Closeness, Responsiveness and *Uniformity.*
Name Classes

Names in an encoded process (and its environment) are separated in three groups.

- For encoded data:

 ω-names
Name Classes

Names in an encoded process (and its environment) are separated in three groups.

- For encoded data:
 - ω-names
- For responsiveness:
 - Linear names
Names in an encoded process (and its environment) are separated in three groups.

- For encoded data:
 \(\omega \)-names

- For responsiveness:
 linear names

- For the rest:
 plain names
Two constructs are needed for defining bisimilarity:

Definition

Template Processes $L_\sigma(a)$: Models ω-servers in the environment.

$$L((\mathcal{P}^1)_{\omega}(a) = !a(x).\bar{x}\langle a_1 \rangle$$
Two constructs are needed for defining bisimilarity:

Definition

Template Processes $L_\sigma(a)$: Models ω-servers in the environment.

$L_{(\downarrow(a))} = !a(x).\bar{x}\langle a_1 \rangle$

Definition

Observable Data $\Omega_\Sigma^P(a)$: Tests ω-servers in the process.

If $P = !a(x).\bar{x}\langle z \rangle$ then $\Omega_\Sigma^P(a) = \langle z \rangle$
Symmetric \mathcal{R} is a *discreet* bisimulation if $P \mathcal{R} Q$ implies:
Discrete Bisimulation

Symmetric \mathcal{R} is a discrete bisimulation if $P \mathcal{R} Q$ implies:

1. If $P \xrightarrow{\mu} P'$ where μ is silent or on a plain/linear channel:
 - $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$.
Symmetric \(R \) is a discreet bisimulation if \(P R Q \) implies:

1. If \(P \xrightarrow{\mu} P' \) where \(\mu \) is silent or on a plain/linear channel:
 - \(Q \xrightarrow{\mu} Q' \) and \(P'RQ' \).

2. \(\forall u \omega \)-input in \(P \) (say \(P \xrightarrow{u(\bar{x})} P' \))
 - \(\Omega_P^\Sigma (u) = \Omega_Q^\Sigma (u) \),
Symmetric \mathcal{R} is a *discrete* bisimulation if $P \mathcal{R} Q$ implies:

1. If $P \xrightarrow{\mu} P'$ where μ is silent or on a plain/linear channel:
 - $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$.

2. $\forall u \ \omega$-input in P (say $P \xrightarrow{u(\check{x})} P'$)
 - $\Omega_P^\Sigma (u) = \Omega_Q^\Sigma (u)$,
 - Safety: $P' \mathcal{R} P'$.
Symmetric \(R \) is a \textit{discrete} bisimulation if \(P R Q \) implies:

1. If \(P \xrightarrow{\mu} P' \) where \(\mu \) is silent or on a plain/linear channel:
 - \(Q \xrightarrow{\hat{\mu}} Q' \) and \(P' R Q' \).

2. \(\forall u \) \(\omega \)-input in \(P \) (say \(P \xrightarrow{u(x)} P' \))
 - \(\Omega_P^\Sigma (u) = \Omega_Q^\Sigma (u) \),
 - Safety: \(P' R P' \),
 - Determinism: \(\exists! \xi \) s.t. \(\Omega_P^\Sigma (u) = \xi \),
Discrete Bisimulation

Symmetric R is a \textit{discrete} bisimulation if $P \mathcal{R} Q$ implies:

1. If $P \xrightarrow{\mu} P'$ where μ is silent or on a plain/linear channel:
 - $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$.

2. $\forall u \omega$-input in P (say $P \xrightarrow{u(\bar{x})} P'$)
 - $\Omega^\Sigma_P(u) = \Omega^\Sigma_Q(u)$,
 - Safety: $P' \mathcal{R} P'$,
 - Determinism: $\exists! \xi$ s.t. $\Omega^\Sigma_P(u) = \xi$,
 - Closeness: $P \mathcal{R} (\nu \bar{x}) P'$.
Discrete Bisimulation

Symmetric \mathcal{R} is a *discrete* bisimulation if $P \mathcal{R} Q$ implies:

1. If $P \xrightarrow{\mu} P'$ where μ is silent or on a plain/linear channel:
 - $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$.

2. $\forall u$ ω-input in P (say $P \xrightarrow{u(\tilde{x})} P'$)
 - $\Omega_P^\Sigma (u) = \Omega_Q^\Sigma (u)$,
 - Safety: $P' \mathcal{R} P'$,
 - Determinism: $\exists! \xi$ s.t. $\Omega_P^\Sigma (u) = \xi$,
 - Closeness: $P \mathcal{R} (\nu \tilde{x}) P'$.

3. $\forall u$ ω-output in P:
 - $(L_\sigma (u) \mid P) \mathcal{R} Q$.
Channel Types

Definition

A Channel Type is a structure of the form:

\[a : ((\tilde{\sigma})^m, \rho, \tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}) \]

- \(\tilde{\sigma} \): Parameters
- \(m \): Action Mode
- \(\rho \): Protocol
- \(\tilde{\alpha} \): Receptiveness
- \(\tilde{\beta} \): Input Responsiveness
- \(\tilde{\gamma} \): Output Responsiveness
Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact.
Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact.

ω over p:

$$(\nu p) \ (\overline{p\langle u \rangle}.! u \ \cdots \ | \ \overline{p\langle v \rangle}.! v \ \cdots \ | \ p(x). \ \cdots \ | \ p(y). \ \cdots)$$
Highly constrained ω and unreliable plain names can interact.

- ω over p:
 $$(\nu p) \left(\overline{p\langle u \rangle}.! u \cdots \mid \overline{p\langle v \rangle}.! v \cdots \mid p(x).\cdots \mid p(y).\cdots \right)$$

- p over ω:
 $$\overline{u\langle l, p, q \rangle} \mid ! u(x, y, z).\overline{x\langle y \rangle}$$
Inter-Class Interactions

Highly constrained ω and unreliable plain names can interact.

- ω over p:

$$\langle \nu p \rangle \ (\langle p \rangle u \! u \cdots \mid \langle p \rangle v \! v \cdots \mid p(x) \cdots \mid p(y) \cdots)$$

- p over ω:

$$\langle l, p, q \rangle \mid ! u(x, y, z).x$$

- Still, ω’s discreetness guarantees are preserved.
Anatomy of one Rule

\[
\begin{align*}
A \vdash_{\pi} P \\
(\nu\tilde{x}) \left(l : (\downarrow_1)((\tilde{\sigma})^{\uparrow_1}, \rho, \emptyset, (\tilde{x})) + l.\hat{l}.\rho(\tilde{x} : \tilde{\sigma}) \odot l.A \right) \vdash_{\pi} l(\tilde{x}).P \quad (\text{INP}_1)
\end{align*}
\]
Anatomy of one Rule

\[
\frac{A \vdash_{\pi} P}{(\nu \tilde{x}) \left(l : (\downarrow_1)(\tilde{\sigma})^{\downarrow_1}, \rho, \emptyset, (\tilde{x}) \right) + l.\hat{l}.\rho(\tilde{x} : \tilde{\sigma}) \odot l.A} \vdash_{\pi} l(\tilde{x}).P} \quad (\text{INP}_1)
\]

- \(l\) receptive now; responsive when parameters are ready
Anatomy of one Rule

\[
\frac{A \vdash_\pi P}{(\nu \tilde{x}) \left(l : (\downarrow_1)((\tilde{\sigma})^{\downarrow_1}, \rho, \emptyset, (\tilde{x})) + l.\hat{l}.\rho(\tilde{x} : \tilde{\sigma}) \odot l.A \right) \vdash_\pi l(\tilde{x}).P} \quad \text{(INP}_1\text{)}
\]

- \(l \) receptive now; responsive when parameters are ready
- Remote parameters
Anatomy of one Rule

\[
A \vdash_{\pi} P
\]

\[(\nu \tilde{x}) \left(l : (\downarrow_1)(\langle \tilde{\sigma}\rangle_1, \rho, \emptyset, (\tilde{x})) + l.\hat{l}.\rho(\tilde{x} : \tilde{\sigma}) \circ I.A \right) \vdash_{\pi} l(\tilde{x}).P \quad \text{(INP} _1)\]

- \(l\) receptive now; responsive when parameters are ready
- Remote parameters
- Continuation
Anatomy of one Rule

\[
\frac{A \vdash_\pi P}{(\nu \tilde{x})(l : (\downarrow_1)((\tilde{\sigma})^\downarrow^1, \rho, \emptyset, (\tilde{x})) + l.\hat{l}.\rho(\tilde{x} : \tilde{\sigma}) \odot l.A) \vdash_\pi l(\tilde{x}).P} \quad (\text{INP}_1)
\]

- \(l\) receptive now; responsive when parameters are ready
- Remote parameters
- Continuation
- \(P\) must provide resources specified in \(\tilde{\sigma}\)
(Expected) Results

Discreetness:

Theorem

\[(A \vdash_\pi P) \Rightarrow (P \approx_R P)\]
(Expected) Results

Discreetness:

Theorem

\[(A \vdash_{\pi} P) \Rightarrow (P \approx_{R} P)\]

Soundness:

Theorem

\[(A \vdash_{\pi} P) \land \Sigma_{A}(a) = (\cdots)^{1} \Rightarrow (P \xrightarrow{(\nu z)\ a}\overrightarrow{x})\]

\[(A \vdash_{\pi} P) \land \Sigma_{A}(a) = (\cdots)^{1} \Rightarrow (P \xrightarrow{a}\overleftarrow{x})\]
(Expected) Results

Discreetness:

Theorem

\[(A \vdash_{\pi} P) \Rightarrow (P \approx_{R} P)\]

Soundness:

Theorem

\[
(A \vdash_{\pi} P) \land \Sigma_{A}(a) = (\cdots)^{\uparrow_{1}} \Rightarrow (P \xrightarrow{\nu z \overline{a}(\overline{x})})
\]

\[
(A \vdash_{\pi} P) \land \Sigma_{A}(a) = (\cdots)^{\downarrow_{1}} \Rightarrow (P \xrightarrow{a(\overline{x})})
\]

Safety:

Theorem

\[
(A \vdash_{\pi} P) \land (P \rightarrow P') \Rightarrow (A \vdash_{\pi} P')
\]
Thank You (Obrigado, Shukria, Kiitos, Merci)!

The paper can be found at http://gamboni.org/maxime/