
Responsive Choice in Mobile Processes?

Maxime Gamboni, António Ravara??

SQIG, Instituto de Telecomunicações and Mathematics Dept.
IST, Technical University of Lisbon

Abstract. We propose a general type notation, formal semantics and
a sound, compositional, and decidable type system to characterise some
liveness properties of distributed systems. In the context of mobile pro-
cesses, we define two concepts, activeness (ability to send/receive on a
channel) and responsiveness (ability to reliably conduct a conversation
on a channel), that make the above properties precise. The type system
respects the semantic definitions of the concepts, in the sense that the
logical statements it outputs are, according to the semantics, correct de-
scriptions of the analysed process. Our work is novel in two aspects. First,
since mobile processes can make and communicate choices, a fundamen-
tal component of data representation (where a piece of data matches
one of a set of patterns) or conversations (where the protocol may per-
mit more than one message at each point), our types and type system
use branching and selection to capture activeness and responsiveness
in process constructs necessary for such usage patterns. Secondly, con-
ditional properties offer compositionality features that permit analysing
components of a system individually, and indicate, when applicable, what
should be provided to the given process before the properties hold.
Keywords π-calculus, liveness properties, choice, static analysis

1 Introduction

When describing a distributed or service-oriented system using mobile pro-
cesses [12, 15], it is important to provide a number of liveness guarantees, such
as, from a client’s point of view, “If I send a request, will it eventually be re-
ceived? Will it eventually be processed, and will I eventually obtain an answer?”,
or, from a server’s point of view, “Will I eventually receive a request? Will my
clients respect my communication protocol?”. The work we present herein en-
sures these properties statically, allowing, e.g., to guarantee reliability of actual
software or distributed protocols, or to prove validity of calculus encodings. The
main contribution of this work is an integration of choice with activeness and
responsiveness, through a general type notation, formal semantics and a sound,
compositional, and decidable type system. This work has three main ingredients:

? This work is partially supported by SQIG — Instituto de Telecomunicações and IST,
Portugal, by Fundação para a Ciência e a Tecnologia, as well as the EU FET-GC
project Sensoria (IST-2005-16004).

?? CITI and Dep of Informatics, FCT, New University of Lisbon

First, activeness (ability to establish a connection) and responsiveness (abil-
ity to conduct a conversation for each connection) are liveness properties that
have been studied, in more restricted forms, under the names of receptiveness
[14], lock-freedom [8] or responsiveness [1]. Activeness is a generalisation of re-
ceptiveness both because communication is not required to succeed immediately
but also because we may talk of output activeness, whereas receptiveness is only
for inputs. Activeness of a channel end point (henceforth called port) is equiva-
lent to lock-freedom of every instance of the complement port (including those
in the environment). Acciai and Boreale’s responsiveness is actually closer to
what we call activeness than our concept of responsiveness.

Secondly, conditional properties are statements of the form ∆/ Θ, where
∆ and Θ are logical statements on channel activeness meaning that “∆ holds
provided Θ is made available (e.g. through parallel composition)”.

Thirdly, the language of processes, as well as the language of types, sup-
port the concepts of selection (or “internal choice”) and branching (or “external
choice”), abstract descriptions of choices made and communicated by processes.

Conversations are an example where responsiveness and choice appear to-
gether. A conversation is a sequence of exchanges between a server and a client,
guided by a protocol that describes what data type may be transmitted and in
which direction, as well as choices that may be performed and by which party.
The following example (in a π-calculus extended with numbers and a multiplica-
tion operator) is a multiplication service that receives numbers and returns their
product. At every step the client selects to send more numbers (“more”) or re-
quest the result (“done”). Input (respectively, output) responsiveness of channel
prod in this scenario means that the server (respectively, the client) will keep
progressing until reaching a terminal state, i.e. until t is sent over r.

Server = ! prod(s).p0〈s, 1〉 | ! p0(s, t).s(νmore, done).(
more(s, n).p0〈s, t× n〉+ done(r).r〈t〉

)
Client = prod(νs).s(more, done).more(νs, 2).s(more, done).more(νs, 5).

s(more, done).done(νr).r(t).print〈t〉

A second application is Milner’s encoding of Boolean values in the π-calculus
[11], which represents them as receivers on two parameter channels: True replies
to queries with a signal on the first parameter (! b(tf).t̄) and False on the second
one (! b(tf).f̄). A Boolean is (input) active if it is able to receive a request, and
(input) responsive if it is able to reply to all requests. Those two processes are
instances of selection because they pick one behaviour out of a set of mutually
exclusive permissions, by sending a signal to one parameter rather than to the
other. A Random Boolean can be written ! b(tf).(νx) (x̄ | (x.t̄+x.f̄)), in which
the selection is performed “at run-time” by the sum (“+”). A selection made
by one process may cause branching in another process. Branching is typically
implemented with the π-calculus sum operator, as in b(νtf).(t.P+f.Q), which

2

runs P if b is True, and Q if b is False. The “r = a and b” logical circuit is
implemented as follows.

A = ! r(tf).a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (1)

Upon receiving a request on r, process A first queries a. If it returns True (t′)
then the process returns on b the same channels received on r. If a returns False
instead (f ′), the process returns False (f̄). So, depending on a and b’s behaviour,
either a signal will be sent on t, or one will be sent on f (but never both). We
shall use this process as a running example in the course of this paper. First
by formally stating the property “r is responsive provided that both a and b
are active and responsive” into a type, then we will prove that this statement is
correct using semantic definitions, and finally, to illustrate our type system, we
will show how to automatically infer that property from the process alone (and
given that a, b and r are all Booleans).

To the best of our knowledge, no existing work is able to perform a static
analysis of processes such as (1). The usual approach for deciding whether names
are active is to assign a single numerical level to name occurrences. But this
does not allow for conditional properties, and moreover does not deal nicely with
choice (specifically, with selection). In this case, when analysing r’s continuation,
as t̄ may never get triggered (in case r returns False), it would require an infinite
level, and similarly for f̄ . In other words, all a level-based system is able to say
is “neither t̄ nor f̄ is guaranteed to ever be fired”. We need a typing system able
to capture the fact that exactly one of t̄ and f̄ will eventually get triggered when
r is queried. In contrast to level-based analysis, dependency-based systems as
we have been developing naturally incorporate choice and branching operators,
to express that sort of properties (a short abstract presents the approach [5]).

These three ingredients, responsiveness, choice and conditional properties,
are put together into behavioural statements. Given a process and for every
channel a channel type specifying its communication protocol, the type system
constructs a process type containing a behavioural statement describing every
property it was able to infer from the process (unless the process risks violating
constraints such as linearity or arity of a channel, in which case it is rejected).

This extended abstract is intended as only an overview of our work, and some
technical details have been deliberately left out or put in appendices. A complete
technical report including proofs can be found on-line [6].

Section 2 describes our type syntax and algebra, Section 3 gives precise se-
mantics for our types and finally Section 4 presents our type system.

2 Processes, Types and Dependencies

After a word on the process calculus used, we describe in this section our type
syntax and algebra in detail.

3

Processes: P ::= (P |P)
˛̨

(νx : σ)P
˛̨

S
˛̨

0
Components of a parallel composition: S ::= (S+S)

˛̨
G.P

Guards: G ::= T
˛̨

!T
Non-replicated guards: T ::= (νz : σ)T

˛̨
a(ỹ)

˛̨
a〈x̃〉

Table 1. Process Syntax

2.1 Processes

Our target process calculus is the synchronous polyadic π-calculus with mixed
guarded sums and replication, according to the grammar given in Table 1. The
symbol σ (hereafter usually omitted) stands for x’s channel type, whose definition
is given later. The letters a, b, c, d, r, x, y, z denote channel names (sometimes
simply called names), taken from a countable set. Every channel x has two ports,
its input (x) and output (x̄) end points. Letter p ranges over ports.

Free names fn(P) of a process P are defined as usual, binders being (νx)P
(binding x in P) and a(ỹ).P (binding ỹ in P). A guard G has a subject port
sub(G), defined by the axioms sub(!T)def= sub((νx : σ)T)def= sub(T), sub(a(ỹ))def= a

and sub(a〈x̃〉) def= ā, and a set of object names obj(G), defined by obj(!T) def=
obj((νx : σ)T) def= obj(T), obj(a(ỹ)) def= {ỹ} and obj(a〈x̃〉) def= {x̃}, of which the
bound names bn(G) are a subset: bn(a(ỹ)) def= {ỹ} and bn((νz̃) a〈x̃〉) def= {z̃}.
Finally, the multiplicity #(G) of a guard G is ω if it is replicated, or 1 other-
wise. The operational semantics of the calculus is given, as usual, by a labelled
transition system (Appendix A).

2.2 Syntax of types

Types contain annotations on channels to record the liveness properties they
enjoy (activeness and/or responsiveness), as well as the number of times they
may be used: Activeness and multiplicities specify, respectively, lower and upper
bounds on the number of times a port is going to be used. We write pm, where p
is a port and m is a multiplicity that can be 0, 1, ω (one replicated occurrence)
or ? (unbounded), to specify an upper bound on the use of p. We write pA to
specify a non-zero lower bound on the use of p. Note that multiplicity is a safety
property (broken by using a channel too often), while activeness is a liveness
property, satisfied once a message is ready to be sent or received. We focus on
liveness properties, and use multiplicities merely as a tool for establishing them.

Behavioural statements. Just like pA, activeness of a port p, tells that a p-
guarded process eventually comes to top-level1, activeness of a branching sA
where s =

∑
i pi requires a sum to eventually come to top-level, with one pi-

guarded branch for each i.

1 Q is at top-level in P if P ≡ (νz̃) (P | Q)

4

Behavioural statements ∆ ::= ∆ ∨∆
˛̨
∆ ∧∆

˛̨
∆/∆

˛̨
γ

˛̨
pm

˛̨
⊥

˛̨
>

Resources γ ::= sA
˛̨

pR
Sums s ::= s+ s

˛̨
p

Table 2. Behavioural Statement Syntax

A port a or ā is responsive in a process (written aR or āR) if a-receivers
(or ā-senders) respect the channel protocol. Protocols, expressed using channel
types, will be described later on.

These three expressions — pm, sA and pR — are the fundamental building
blocks of behavioural statements, logical expressions describing the behaviour of
a process. The dependency statement ∆/Θ (read “∆ if Θ” and also called rely-
guarantee construct in the literature), says that whenever Θ holds in a process’s
environment, ∆ will hold in that process. For instance aA / b̄A holds for the
process b.a because, should a third-party process provide an output at b (“b̄A”),
this process will provide an input at a (“aA”). Dependency “∆/ Θ” can be
understood as an implication “∆ ⇐ Θ”, and indeed shares many properties
with logical implication.

The usual logical connectives ∨ (disjunction), ∧ (conjunction), > (truth) and
⊥ (falsity) are used to build complex behavioural statements (ranged over by ε,
∆, Θ or Ξ and given by the grammar in Table 2) about a process. In this work,
multiplicities pm may appear neither on the left nor on the right of a/ connective,
and in ∆/Θ, ∆ and Θ may not themselves use the / connective. By convention
ε denotes the dependencies of a particular resource. We often group statements
about a particular port into a single abbreviated expression: pmA

def= pm ∧ pA
(“p is used at least once and at most m times”) and pAR

def= pA ∧ pR (“p is
active and responsive”). For instance p1

A is a linear port (used precisely once),
p?A is a port used at least once, and p1 is a port used at most once.

Channel Types give, separately for the input and output ports of a channel,
behavioural statements that must hold for every receiver, respectively sender,
at the corresponding channel, using natural numbers (starting from 1) to refer
to the parameter channels. Specifically, multiplicities indicate which capabilities
(input or output) of the parameters may be used, activeness resources tell which
parameter must be active, selection “∨” tells what choices may be performed,
and branching “+” tells what branching they must offer. Note how the type
of some channel a only talks about the parameters carried on a — it does not
include a’s multiplicities or activeness which are given by the process type.

The input port of a Boolean channel (such as r, a and b in (1)) has type

1̄1
A ∨ 2̄1

A (2)

that says that either the first parameter (“1”) must be output (“1̄”) active (“A”),
and the second parameter unused, or (“∨”) the opposite (“2̄1

A”) — by convention

5

we don’t mention ports with multiplicity zero. The output port has type(
11 ∨ 21

)
∧ (1 + 2)A, (3)

which has a similar meaning, but where one of its parameters (t and f in the
example) should be input rather than output. Additionally (“∧”), inputs at
the parameters (“1” and “2”) must be the guards of a sum (“+”). A Boolean
channel is now said input (resp., output) responsive if its input port (resp.,
output port) respects this protocol. A channel type σ is a triple (σ̃; ξI; ξO) where
σ̃ are the types of the parameters, ξI and ξO are behavioural statements (only
using numbers for channels) standing for the behaviour required respectively of
inputs and outputs at that channel. For instance, abbreviating the parameter-
less channel type (∅;>;>) as (), the Boolean type gathers (2) and (3) as

Bool
def=

(
()() ; 1̄1

A ∨ 2̄1
A ; (11 ∨ 21) ∧ (1 + 2)A

)
The type σp of channel prod in the conversation example from the introduction
nicely illustrates how a channel type describes the protocol used at a channel:
1. Connection: σp = (σs; 1̄AR; 1AR),
2. Client selects m or d: σs = (σm, σd; 1̄AR ∨ 2̄AR; (1 + 2)A ∧ (1R ∨ 2R)),
3. If m, client sends a number: σm = (σs, Int; 1̄AR; 1AR),
4. If d, client requests result: σd = (σr; 1̄AR; 1AR),
5. Server returns result: σr = (Int;>;>).

Process Types are similar to channel types, but refer to channels by names rather
than parameter numbers. A process type Γ is a structure (Σ ; ΞL J ΞE) where
Σ = ã : σ̃ is the channel type mapping giving the channel types of free names
used by the process, while ΞL and ΞE are behavioural statements using names
in ã, respectively the local component (constraints what the process does) and
the environment component (constraints what any third-party process may do).
Unless specified otherwise, ΞE contains no activeness or responsiveness state-
ments.

Typing the running example. The process (1) can be given the following type,
where the local component says that r is active with multiplicity ω (i.e. has
precisely one occurrence and it is replicated), and its responsiveness depends on
both a and b being active and responsive. The environment component specifies
that a and b must both have at most one replicated instance, and there are no
additional input on r.

ΓA =
(
a : Bool, b : Bool, r : Bool; rωA ∧

(
rR/ (aAR ∧ bAR)

)
J aω ∧ bω ∧ r0

)
(4)

Apart from some informal descriptions, behavioural statements have so far
been purely syntactical constructs. Some operators and relations we present
ahead clarify their semantics: (1) equivalence and weakening relations highlight
their logical aspect (a statement may imply another); (2) composition, restric-
tion and prefixing operators highlight their spatial aspect by mirroring process
constructs; and (3) the transition operator and the typed transition relation
highlight their dynamical aspect (types, like processes, may evolve over time).

6

2.3 Logical Aspects

We define weakening and reduction relations on behavioural statements.

A weakening relation on behavioural statements (and, by extension, on process
types) builds on the idea that a statement A can be said weaker than a statement
B (written A � B) if all worlds (processes) satisfying B also satisfy A. Similarly,
statements are equivalent (written A ∼= B) if they hold in the same set of worlds
(i.e., if A � B and B � A).

The weakening relation is inductively defined by the rules in Appendix B. We
present now the most significant rules, useful to analyse the running example.

– ∆1∧∆2 � ∆1 � ∆1∨∆2, and ⊥�∆�>. ∆∧(∆1∨∆2) ∼= (∆∧∆1)∨(∆∧∆2).
– ∧ and ∨ are commutative, associative and idempotent, up to ∼=.
– On multiplicities, pm1 � pm2 if m1 = 0 or m2 ∈ {m1, ?}. Also, p? ∼= >.
– (γ/ ε1) ∧ (γ/ ε2) ∼= γ/ (ε1 ∨ ε2) and (γ/ ε1) ∨ (γ/ ε2) ∼= γ/ (ε1 ∧ ε2).

The Technical report (“Weakening Decidability” in [6], Section 2) describes
a way to decide if two behavioural statements are related by weakening. From
now on we consider process types and dependencies up to ∼= as equal, since every
operator and relation considered commutes with ∼= (Lemma “Types may be seen
up to ∼=” in [6], Section 2).

Dependency reduction. Another relation highlighting the logical aspect of be-
havioural statements is the reduction relation, analogous to the modus ponens
rule in logic. It occurs with process composition which may create dependency
chains that must then be reduced. For example a.b̄ and b.c̄ satisfy respectively
b̄A/āA and c̄A/b̄A, while their composition a.b̄ | b.c̄ satisfies (b̄A/āA)∧(c̄A/b̄A)∧
(c̄A/ āA) (where the underlined statement was derived from the other two) or,
applying type equivalence, (b̄A/ āA) ∧

(
c̄A/ (āA ∨ b̄A)

)
. More generally:

Definition 1 (Dependency Reduction). The reduction relation ↪→ on be-
havioural statements is a partial order relation satisfying
1. (sA/ ε) ∧ (γ/ ε′) ↪→ (sA/ ε) ∧ (γ/ ε′{ε{⊥/γ}∨sA/sA}),
2. (pR/ ε) ∧ (γ/ ε′) ↪→ (pR/ ε) ∧ (γ/ ε′{ε{⊥/γ}∧pR/pR}).
A closure of a behavioural statement Ξ, written close (Ξ), is Ξ ′ such that Ξ ↪→
Ξ ′ and if Ξ ′ ↪→ Ξ ′′ then Ξ ′ ∼= Ξ ′′.

The different treatment of activeness and responsiveness (in γ’s dependencies,
the former gets a ∨ and the latter a ∧), can be understood as follows: If two
processes P1 and P2 both provide an a-input, it is enough that one of them is
able to receive a request to have a active in P1|P2. On the other hand, they must
both be responsive in order to guarantee that all a-requests will get a response.
Also note how self-dependencies γ / γ are replaced by γ / ⊥. Activeness self-
dependencies are found in deadlocks such as ā.! b | b̄.! a where aA and bA depend
on each other, and responsiveness self-dependencies are found in livelocks such
as ! a(x).b〈x〉 | ! b(x).a〈x〉 where aR and bR depend on each other.

7

Most operators commute with the logical connectives: A logical homomor-
phism is a function f on behavioural statements or process types such that
f(X ∨ Y) = f(X) ∨ f(Y) and f(X ∧ Y) = f(X) ∧ f(Y). It is now sufficient to
describe how operators behave on behavioural statements not using ∧ or ∨, as
the general behaviour can be derived from the above.

2.4 Spatial Aspects

Every process constructor has a corresponding operator on types, which is the
essence of any syntax directed type system such as ours. We focus on the (par-
allel) composition operation “Γ1 � Γ2” that, given the types Γ1 and Γ2 of two
processes P1 and P2, constructs the type of P1|P2. On behavioural statements,
� is the logical homomorphism such that:

1. (pm)� (pm
′
) def= pm+m′

2. (sA/ ε)� (sA/ ε′)
def= (sA/ ε) ∨ (sA/ ε′)

3. (pR/ ε)� (pR/ ε′)
def= (pR/ ε) ∧ (pR/ ε′)

4. When they don’t have resources in common, Ξ �Ξ ′ def= Ξ ∧Ξ ′.

When composing full process types, the local component of the whole is the
composition of the local components of the parts, and the environment of the
whole is the environment of one part, without the local component of the other
part (we omit the formal definition of “\” that does just that). Formally:

(Σ;ΞL1 JΞE1)�(Σ;ΞL2 J ΞE2) def= (Σ;ΞL1 �ΞL2 J (ΞE1 \ΞL2) ∧ (ΞE2 \ΞL1))

The � operator is associative, commutative and has (∅;> J >) as a neutral
element (Lemma “Composition Properties” in [6], Section 2). See Sections 2.5
and 4 for examples.

2.5 Dynamical Aspects

We describe in this section a transition operator “Γ o µ” on types, to answer to
the following question: If a process P has type Γ , and P

µ−−→ P ′, what is the
type of P ′? The motivation for such an operator is three-fold:

Ruling out transitions that a well-behaved third party process can’t cause
and that force a process to misbehave. E.g. interference on a linear channel
(a transition l|l̄ l−−→ l̄ is ruled out, as it contradicts l̄0 in the environment)

and channel mismatches (a(x).x〈3〉 | b(yz)
a(b)
−−−−→ b〈3〉 | b(yz) introduces an arity

mismatch and is ruled out, as a’s parameter type is incompatible with b’s type).
Secondly, to avoid semantics with universal quantification on third-party pro-

cesses, we characterise the / connective with labelled transitions. However, those
change the properties of processes: assume P and E represent a process and its

environment. A request P
a〈b〉
−−−−→ is then received as E

a(b)
−−−−→ E′, and if a was re-

sponsive in E then b̄ is active and responsive and a is no longer active in E′ (for

8

linear a with a typical input-output-alternating channel type). The transition
operator predicts the evolution of both the process and its environment.

Thirdly, to prove that the previous point is sound, subject reduction works
with arbitrary labelled-transitions (see Proposition 1 on page 13).

For transitions not carrying parameters, we have the following equality:

(Σ;ΞL J ΞE) o p def= (Σ;ΞL \ p J ΞE \ p̄)
Based on � and channel type instantiation σ[x̃] (which transforms a channel

type σ into a process type, essentially by substituting parameter references 1 . . . n
by x1 . . . xn, but with extra care in case two xi are equal), input transitions are
simulated as follows. Let Γ = (Σ;ΞL J ΞE) with Σ(a) = σ.

Γ o a(x̃) def= Γ o a� σ[x̃]/ (aR J āR)

The Γ/ (aR J āR) operation makes Γ ’s local component depend on aR and
its environment component depend on āR. An output transition can be done by
swapping the local and environment components, doing an input transition, and
swapping the two resulting components back. We illustrate the above operator

on the transition A
r(uv)
−−−−−→ A′ = A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄) where A is (1) and

its type (4) is ΓA =
(
Σ ; rωA ∧ rR/ (aAR ∧ bAR) J aω ∧ bω ∧ r0

)
:

ΓA o r(uv) = ΓA o r �
(
u : (), v : (); (ūA ∨ v̄A)/ rR J (u1 ∨ v1) ∧ (u+ v)A/ r̄R

)
1. The “or” part has no effect as rω \ r = rω and r̄? \ r̄ = r̄?.
2. The channel type mapping is Σ′ = a : Bool, b : Bool, r : Bool, u : (), v : ().
3. the remote component “ΞE” is just the conjunction of

(
aω ∧ bω ∧ r0

)
from

ΓA and
(
(u1 ∨ v1) ∧ (u+ v)A/ r̄R

)
.

4. The local component is ΞL =
(
rωA∧ rR/ (aAR∧ bAR)

)
�
(

(ūA∨ v̄A)/ rR
)

=(
rωA ∧ rR/ (aAR ∧ bAR)

)
∧
(

(ūA ∨ v̄A)/ rR
)

.
5. Closure of ΞL reduces the (ūA ∨ v̄A)/ rR ∧ rR/ (aAR ∧ bAR) dependency

chain into (ūA ∨ v̄A)/ (rR ∧ aAR ∧ bAR).
6. Finally, because of r0 in the remote side ΞE, the dependency on rR can be

replaced2 by > in the above statement, resulting in (ūA∨ v̄A)/ (aAR∧ bAR).
7. Omitting irrelevant parts, we end up with(

Σ′; (ūA ∨ v̄A)/ (aAR ∧ bAR) J aω ∧ bω ∧ r0 ∧ (u1 ∨ v1)
)

(5)

as a type for A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄), where the local component is read as
“if active and responsive a and b inputs are provided, then an output will be
sent on (exactly) one of u and v,” which is indeed a correct statement for that
process A′. Remember that this type was not obtained by analysing A′, but is

a prediction of the effect of a transition
r(uv)
−−−−−→ on a process of type ΓA.

Transitions on types and on processes are combined to form transitions on
typed processes: (Γ ;P)

µ−−→ (Γ o µ;P ′) if P
µ−−→ P ′ and Γ o µ is well-defined.

2 An unused port is vacuously responsive. Inversely, rA could be replaced by ⊥.

9

3 Activeness and Responsiveness

In this section we define correctness of a type Γ for a process P , denoted Γ |= P .
The projection relation “↘” permits extracting an “elementary” part of a

process type for testing its validity. It simulates selections done by the envi-
ronment by reducing any ∆1 ∧ ∆2 . . . to ∆i and any γ/ (ε1 ∨ ε2 . . .) to γ/ εj
for some i and j. Then, proving that a projection

∨
i γi/ εi is correct for P is

done with a strategy — a function f mapping typed processes to pairs of tran-
sition labels and typed processes such that f(Γ ;P) = (µ;Γ ′;P ′), also written

(Γ ;P)
f−−→ (Γ ′;P ′), implies (Γ ;P)

µ−−→ (Γ ′;P ′). For (Γ ;P) 6∈ dom(f) we write

(Γ ;P)
f−−→ (Γ ;P). A valid strategy “leads to” a process where one of the γi

is immediately available, using no more external resources than declared in εi.
While projections deal with disjunctions on the right of the / connective, dis-
junctions on its left need to be handled specially: (Ξ1 ∨Ξ2) |= P is weaker than
(Ξ1 |= P) ∨ (Ξ2 |= P) as it could be that the selection is not yet decided in P ,
but will only be after a few transitions. This is addressed by first picking a full
transition sequence and then only requiring the outcome of the selection to be
decided, which can be seen in the definition in “∃α s.t.”. Correctness is stated
similarly to the usual notion of fairness (“if a particular transition is constantly
available, it will eventually occur”) but with a strategy instead of a particular
transition. Note how the transition sequence interleaves single invocations of the
strategy between arbitrarily long transition sequences: this permits stating re-
sults in presence of divergence but still correct with a stochastic scheduler. The
“eventually” aspect of activeness is given by “∃n s.t.”. “Immediately correct”
essentially means the corresponding port or sum is at top-level.

If a type Γ is correct for a process then so is any Γ ′ with Γ ′ � Γ (Lemma
“Bisimulations and Type Equivalence” in [6], Section 4).

Definition 2 (Correctness). Let Γ be a type and P a process. We say that
or Γ is correct for P if, for some strategy f , for any infinite sequence of the

form (Γ ;P) = (Γ0;P0)
µ̃0−−−→↘ (Γ ′0;P ′0)

f−−→ (Γ ′1;P ′1) · · · µ̃i−−−→↘ (Γ ′i ;P
′
i)

f−−→
(Γi+1;Pi+1) · · · : Let (for all i) pi be the subject of the (Γ ′i ;P

′
i)

f−−→ (Γi+1;Pi+1)
transition (or “τ” if it is the identity or a τ -transition). Then there is a number
n and a resource α such that:

1. for all i with pi 6= τ , (α/ piA) � Γ ′i
2. For some ε with (α/ ε) � Γn, α/ ε is immediately correct for (Γn;Pn).

We now sketch a proof that ΓA given in (4) is a correct type for A given in
(1). We only pick a representative transition sequence, but of course a complete
proof would have to take all possible transitions into account. Following the
pattern given in Definition 2 we alternate arbitrary transition sequences µ̃i (odd-
numbered steps) and those provided by the strategy (even-numbered steps).

1. We first send a request µ̃0 = r(uv). The resulting type is (5) on page 9.

10

2. The strategy executes a(νt′f ′) to bring the process closer to an output on u
or v. This is allowed, as the subject’s complement a is active in the dependen-
cies. The local dependency network is now (ūA∨v̄A)/(aAR∧(t̄′A∨f̄ ′A)∧bAR).

3. As we do not want to help the strategy find the way out we set µ̃1 = ∅.
However we must still do a projection “↘”, i.e. simulate the choice made by
the a-input. Let’s pick f̄ ′: (ūA ∨ v̄A)/ (aAR ∧ f̄ ′A ∧ bAR).

4. The process is now A | (t′.b〈uv〉+f ′.v̄), so the strategy is just to consume the
f ′ prefix, which is permitted because its complement is active (f̄ ′A).

5. We are now at A|v̄. If we set µ̃2 = ∅ at this point, n = 2 satisfies the
requirement as v̄ is at top-level. If instead we consume v̄ with µ̃2 = v̄, the
transition operator removes activeness of both ū and v̄, and the process type
becomes (ūA ∨ v̄A)/⊥ ∼= > which is vacuously correct.

4 Type System

Given a process P , a mapping Σ of channel types for all free names, and option-
ally multiplicities for some names, our type system constructs a process type Γ
for P . Processes that may violate multiplicity constraints or mismatch channel
types are rejected. Typing is decidable and sound, but necessarily not com-
plete (may reject safe processes, or construct a behavioural statement weaker
than what is actually correct for the process). Most rules of the type system
are straightforward (every process constructor has a corresponding process type
operator). Appendix C presents the full system.

We focus on the prefix rule. It �-composes five statements, in order: subject
type and total multiplicities, subject activeness, continuation, expected remote
behaviour and subject responsiveness.

Γ ` P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = ?)⇒ ε = ⊥(

p : σ; J pm ∧ p̄m′
)
�(

; p#(G)
A / ε J

)
�

!if #(G) = ω (νbn(G))
(
Γ / p̄A �

σ[x̃]/ p̄AR �
(; pR/ σ[x̃] J)

)
` G.P

(R-Pre)

We illustrate the five factors in order with the derivation of rR/ (aAR∧ bAR)
as a type for (1) on page 3. We omit parts not needed to get rR’s dependencies.

Subject type, multiplicities and activeness. The parameter-less output f̄ is typed
using (R-Pre). The name is linear (m = m′ = 1) and, since there are no
parameters or continuation, all but the first two factors of the typing are empty,
leaving us with:

(
f : (); J f̄1 ∧ f1

)
�
(
; f̄1

A/> J
)
, or:

Γ6 =
(
f : (); f̄1

A J f̄0 ∧ f1
)
` f̄ (6)

11

Continuation. A sequence G.P is typed like composition G|P , except that ac-
tiveness resources in P additionally depend on p̄A, p being G’s subject port.
Here, f ′.f̄ is again typed with (R-Pre), where the first three terms are now
non-null: (

f ′ : (); J f ′
1 ∧ f̄ ′1

)
�
(

; f ′1A/> J
)
� Γ6/ f̄ ′A ` f ′.f̄

Dropping the unneeded f ′
1
A statement we get

ΓT =
(
f : (), f ′ : (); f̄A/ f̄ ′A J f̄0 ∧ f1 ∧ f ′0 ∧ f̄ ′1

)
` f ′.f̄ (7)

Remote behaviour plays two roles, respectively through the local and environ-
ment parts of the instantiated channel σ[tf]. First, if the input on a channel is
active and responsive, it will behave according to the protocol specified in the
channel type whenever queries are sent to it. For b〈tf〉, this is (t̄A ∨ f̄A)/ bAR,
where the left side is (3) from page 6 with t and f replacing 1 and 2. Second,
it sets upper bounds on the local side’s use of parameters ports. In this case we
get t1 ∨ f1 in the environment side, which effectively prevents any part of the
process to do at t and f anything more than an input-guarded sum at t and f .
Together with the subject b handled as in (6), we get the following:(

b : Bool, t : (), f : (); (t̄A ∨ f̄A)/ bAR J (t1 ∨ f1) ∧ (b̄? ∧ bω)
)
` b〈tf〉 (8)

As in (7), the t′-prefix adds a dependency on t̄′A to all activeness resources:

ΓF =
(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A) J (t1 ∨ f1) ∧ (b̄? ∧ bω)

)
` t′.b〈tf〉 (9)

A sum T +F is given the type (t′ + f ′)A ∧ (ΓT ∨ ΓF), where ΓT (here (7))
and ΓF (here (9)) are respectively the types of T and F , and t′, f ′ their guards:
the process offers a branching t′+f ′, and (“∧”) selects (“∨”) one of ΓT and ΓF

(we use (Σ;ΞL1 J ΞE1) ∨ (Σ;ΞL2 J ΞE2) def= (Σ;ΞL1 ∨ΞL2 J ΞE1 ∧ΞE2) for
ΓT ∨ ΓF). The decoupling between the guards and the continuations is done to
make explicit which channels must be used to make the process branch.(

Σ; (t′ + f ′)A ∧
((

(t̄A ∨ f̄A)/ (bAR ∧ t̄′A)
)
∨
(
f̄A/ f̄

′
A

))
J(

f̄0 ∧ f ′0 ∧ f̄ ′1
)
∧
(

(t1 ∨ f1) ∧ b̄? ∧ bω
))
` t′.b〈tf〉+f ′.f̄ (10)

We run (R-Pre) once more for the full a-output. Now two names are bound
(bn(a(νt′f ′)) = {t′, f ′}), and we only need the third and fourth factors:
Remote behaviour

(
t′: (), f ′: (); (t̄′A ∨ f̄ ′A)/ aAR J t′

1 ∨ f ′1
)

and

Continuation
(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A ∧ aA)∨ (f̄A/ (f̄ ′A ∧ aA)) J

(t1 ∨ f1) ∧ b̄? ∧ bω ∧ f̄0 ∧ f ′0 ∧ f̄ ′1
)
.

The� operator now does some dependency reduction (Definition 1 on page 7):
The remote behaviour provides (t̄′A / aAR) ∨ (f̄ ′A / aAR), and the continua-
tion (t̄A ∨ f̄A) / t′A ∨ (f̄A / f ′A). Remember that (pA / γ) ∧ (α / pA) ↪→

12

(pA/ γ)∧α/ (pA ∨ γ), so the two dependency statements in the continuation be-
come respectively (t̄A∨f̄A)/(t′A∨aAR) and f̄A/(f ′A∨aAR). Therefore composing
remote behaviour and continuation and binding (dropping) t′ and f ′ yields:(

a : Bool, t : (), f : (); (t̄A ∨ f̄A)/ (bAR ∧ aAR) ∨ f̄A/ aAR J

aω ∧ (t1 ∨ f1)
)
` a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (11)

Subject responsiveness. A port is responsive if it provides all resources given in
the channel type, which is what the last statement in the (R-Pre) rule states.
For r(tf), this is written rR / (t̄A ∨ f̄A), where the right hand side is just (2)
from page 5 with t and f replacing 1 and 2. Composing with (11) reduces the
dependency chain and we obtain rR/ (bAR ∧ aAR), as required.

The type system sketched above has two important properties. It agrees with
the transition operator on the type of a process after a transition. . .

Proposition 1 (Subject Reduction). (Γ ;P)
µ−−→ (Γ o µ;P ′) implies ∃Γ ′ s.t.

Γ ′ � Γ o µ and Γ ′ ` P ′.

. . . and decidable typability implies undecidable correctness.

Proposition 2 (Type Soundness). If Γ ` P then Γ |= P .

5 Related Works

Acciai and Boreale’s work on Responsiveness [1] (essentially our activeness, ex-
cept that they work in a reduction-based setting, while we have to take the
environment into account) addresses concerns very close to ours. It does not
support choice or conditional properties, as it uses numerical levels to track de-
pendencies, but presents an extension for recursive processes, in that it permits
handling unbounded recursion such as a “factorial” function. Our dependency
analysis would reject such a process, as the recursive call would create a depen-
dency fR/fR, that reduces to fR/⊥. We conjecture that “delayed dependencies”
[6] would permit integrating their recursion analysis with our work.

Kobayashi’s Livelock-Freedom Type System (implemented as TyPiCal [8, 9]),
does a very fine analysis of channel usages. Instead of counting how many times
a port may be used, they permit arbitrary channel usages that describe using
a CCS-like language in what way and order the two ports of a channel may be
used. This permits describing usages such as “every input must be followed by
an output”. Using numerical levels, basic dependency relations can be forced
between elements of the usages of different channels. This prevents encoding of
selection and branching as it amounts to having no “∨” in behavioural state-
ments, but permits analysing other usage patterns such as semaphores, which
the present work would dismiss as unreliable ?-multiplicities.

Kobayashi and Sangiorgi’s Hybrid Type System for lock-freedom [10] com-
bines (arbitrary) deadlock, termination and confluence type systems on sub-
processes of the one being analysed (thereby permitting analysis of globally

13

divergent processes). This work uses typed transitions reminiscent of ours, and
their “robust” properties are analogous to our semantics permitting arbitrary
transition sequences µ̃i. Channel usages are like those used by Kobayashi in
previous works [8, 9], with the same expressive power and limitations. The typ-
ing rules discard those processes that rely on the environment in order to fulfil
their obligation. Hence well-typed processes are lock-free without making any
assumption on the environment. Advanced termination type systems such as
those proposed by Deng and Sangiorgi [4] permit this hybrid system to deal
with complex recursive functions like tree traversal.

The three following papers have a generic approach, as opposed to the pre-
vious ones (and the present paper) that are aimed at specific properties. They
have to be instantiated with the desired property, expressed in various ways.

Kobayashi’s Generic Type System [7] is a general purpose type system that
can be instantiated with a subtyping relation and a consistency condition on
types, resulting in type systems for various safety properties (unlike activeness
which is a liveness property). Types are CCS-like abstractions of the process, and
the consistency condition verifies that the type enjoys the desired property. Its
types use “+” in essentially the same sense as we do, and “&” corresponds pre-
cisely to our ∨. The paper includes as examples of instantiations, arity-mismatch
checking, race-freedom and deadlock-freedom type systems. However, simply by
providing a subtyping relation and a consistency predicate one does not get the
desired results “for free”. It is still necessary to prove several technical lemmas.

Caires and Vieira’s Spatial Logic Model Checker [3] checks processes for a
wide range of properties, expressed by expressions in a spatial logic. Activeness of
a port p can be written µX.(〈p〉∨23X). Responsiveness of a port depends on the
channel type, but it should be possible to give an inductive translation of channel
types to modal formulæ corresponding to responsiveness on it. The selection
connective ∨ is also present, with the same meaning. There is no direct equivalent
of / , so conditional properties need to be encoded by modifying the activeness
formulæ, which may become too complex with dependencies on responsiveness
as in rR/(aAR∧bAR) (Section 4). Both its strengths and limitations come from it
being a model checker. On the one hand, it takes logical formulæ in input rather
than constructing them, it has a large complexity due to exhaustively exploring
the state space, and doesn’t terminate when given unbounded processes (our
type system is polynomial in the process size and always terminates). On the
other hand it is complete for bounded processes, and recognises activeness in
cases deemed unsafe by our system due to over-approximation.

Acciai and Boreale’s Spatial Type System [2] combines ideas from Kobayashi’s
Generic Type System (types abstract the behaviour of processes) and Spatial
Logic, by performing model checking with spatial formulæ on the types rather
than on the processes. This results in a generic type system able to characterise
liveness properties such as activeness and supporting choice, both through the
process constructor + and logical connective ∨. It is parametrised by “shallow”
(without direct access to the object parts of transitions) logical formulæ, that
it verifies using model-checking. Being based on model checking, it suffers from

14

the same limitations as the previous work, in terms of computation complex-
ity, and difficulty of expressing conditional properties or responsiveness (again,
“responsiveness” in that paper corresponds to our “activeness”). On the other
hand, restricting it to shallow logic formulæ allows working on the abstracted
process, making it more efficient than a fully general model checker. Like the
previous work and unlike the Generic Type System, it doesn’t require proving
soundness of a consistency predicate, as it is based on a fixed formula language.

6 Conclusion

We described a type notation and semantics that combine statements about live-
ness properties (sA and pR), choice (through branching (p + q)A and selection
∆∨∆) and conditional properties (∆/Θ). Then the type system outlined in Sec-
tion 4 is able, given a process P , channel types and optionally port multiplicities,
to construct a process type whose local component ΞL contains all information
the type system was able to gather about P ’s behaviour. As the type system is
sound and decidable, it is necessarily incomplete, but still powerful enough to
recognise activeness and responsiveness in many important applications such as
data representation or conversation-based programming. We chose to focus on
choice itself, leaving out features like recursivity [1] subtyping [13], and complex
channel usages such as locks [8], well explored before in a choice-less context.

References

1. Lucia Acciai and Michele Boreale. Responsiveness in process calculi. Theoretical
Computer Science, 409(1):59–93, 2008.

2. Lucia Acciai and Michele Boreale. Spatial and behavioral types in the pi-calculus.
In Proceedings of CONCUR’08, volume 5201 of LNCS, pages 372–386. Springer,
2008.

3. Lúıs Caires. Behavioral and spatial observations in a logic for the π-calculus. In
Proceedings of FOSSACS’04, volume 2987 of LNCS. Springer, 2004.

4. Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. Information
and Computation, 204(7):1045–1082, 2006.

5. Maxime Gamboni and António Ravara. Activeness and responsiveness in mobile
processes. In 7th Conference on Telecommunications, pages 429–432. Instituto de
Telecomunicações, 2009.

6. Maxime Gamboni and António Ravara. Responsive choice in process calculi. Tech-
nical report, SQIG — IT and IST, UTL Portugal, 2009. http://gamboni.org/i.pdf.

7. Atsushi Igarashi and Naoki Kobayashi. A generic type system for the Pi-calculus.
ACM SIGPLAN Notices, 36(3):128–141, 2001.

8. Naoki Kobayashi. A type system for lock-free processes. Information and Compu-
tation, 177(2):122–159, 2002.

9. Naoki Kobayashi. Typical 1.6.2, 2008.
10. Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of

mobile processes. In Proceedings of CAV’08, volume 5123 of LNCS, pages 80–93.
Springer, 2008.

15

11. Robin Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Spec-
ification, Proceedings of the International NATO Summer School (Marktoberdorf,
Germany, 1991), volume 94 of NATO ASI Series F. Springer, 1993.

12. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
i and ii. Information and Computation, 100(1):1–77, 1992.

13. Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. In Proceedings of LICS’93, pages 376–385. IEEE Computer Society, 1993.

14. Davide Sangiorgi. The name discipline of uniform receptiveness. Theoretical Com-
puter Science, 221(1–2):457–493, 1999.

15. Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

16

A Labelled Transition System

The labelled transition system is inductively defined by the following rules.
Labels, ranged over by µ, are τ , input a(x̃) and output (νz̃ : σ̃) a〈x̃〉 where
a 6∈ z̃ ⊆ x̃.

−

a〈x̃〉.P
a〈x̃〉
−−−−→ P

(Out)
−

a(ỹ).P
a(x̃)
−−−−→ P{x̃/̃y}

(Inp)

P
(νỹ:θ̃) a〈x̃〉
−−−−−−−−−→ Q z ∈ x̃ \ ({a} ∪ ỹ)

(νz : σ)P
(νz:σ,ỹ:θ̃) a〈x̃〉
−−−−−−−−−−−−→ Q

(Open)

P
µ−−→ P ′

!P
µ−−→ P ′ | !P (Rep)

P
µ−−→ Q z 6∈ n(µ)

(νz : σ)P
µ−−→ (νz : σ)Q

(New)

P
µ−−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−−→ P ′ |Q Q |P µ−−→ Q |P ′ (Par)

P
(νz̃:σ̃) a〈x̃〉
−−−−−−−−−→ P ′ Q

a(x̃)
−−−−→ Q′ z̃ ∩ fn(Q) = ∅

P |Q τ−−→ (νz̃ : σ̃) (P ′ |Q′)
Q |P τ−−→ (νz̃ : σ̃) (Q′ |P ′) (Com)

P
µ−−→ P ′

P+Q
µ−−→ P ′ Q+P

µ−−→ P ′
(Sum)

P ≡α P ′ P ′
µ−−→ Q′ Q′ ≡α Q

P
µ−−→ Q

(Cong)

B Weakening on behavioural statements

Definition 3 (Weakening Relation).
Relation � is the smallest preorder defined by the following rules, where ∼= is

its symmetric closure.

1. On behavioural statements or process types (ranged over by η):
– η1 ∧ η2 � η1 � η1 ∨ η2, and ⊥�η�>. η ∧ (η1 ∨ η2) ∼= (η ∧ η1)∨ (η ∧ η2).
– ∧ and ∨ are commutative, associative and idempotent, up to ∼=.
– If η1 � η2 then η ∧ η1 � η ∧ η2 and η ∨ η1 � η ∨ η2.
– If η1 ∼= η2 then γ / η1 ∼= γ / η2, (η J η1) ∼= (η J η2) and (η1 J η) ∼=

(η2 J η).

17

2. On multiplicities, m1 � m2 and pm1 � pm2 if m1 = 0 or m2 ∈ {m1, ?}.
Also, p? ∼= >.

3. On dependency statements: (γ/ε1)∧ (γ/ε2) ∼= γ/ (ε1∨ε2), (γ/ε1)∨ (γ/ε2) ∼=
γ/ (ε1 ∧ ε2) and γ/⊥ ∼= >

C Type System

The type system is constituted by the following rules. (R-Pre) is detailed in
Section 4, and the reader is invited to have a look at the technical report for a
detailed discussion of the notation and operators used in the other rules.

−
(∅;> J >) ` 0

(R-Nil)

∀i : Γi ` Pi
Γ1 � Γ2 ` P1 |P2

(R-Par)
Γ ` P Γ (x) = σ

(νx)Γ ` (νx : σ)P
(R-Res)

∀i :
(
sub(Gi) = {pi}, (Σi;ΞLi J ΞEi) ` Gi.Pi

)
ΞE �

∧
iΞEi(

ΞE has concurrent environment pi′
)
⇒ ε = ⊥(∧

iΣi; (
∑
i pi)A / ε ∧

∨
iΞLi J ΞE

)
`
∑
iGi.Pi

(R-Sum)

Γ ` P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = ?)⇒ ε = ⊥(

p : σ; J pm ∧ p̄m′
)
�(

; p#(G)
A / ε J

)
�

!if #(G) = ω (νbn(G))
(
Γ / p̄A �

σ[x̃]/ p̄AR �
(; pR/ σ[x̃] J)

)
` G.P

(R-Pre)

In the rule (R-Sum), a process type having no “concurrent environment pi′”
prevents a third-party process to attempt selecting more than one branch of the
sum, and, by contraposition, guarantees that any attempt to select a branch of
the sum (by communicating with its guard) will succeed, which is what activeness
of the branching means.

18

