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Abstract

We propose a general type notation, formal semantics and a sound,
compositional, and decidable type system that characterise some liveness
properties of distributed systems supporting choice. When such systems
are specified using mobile processes, it is important to provide a number
of liveness guarantees, such as, from a client’s point of view, “If I send a
request, will it eventually be received? Will it eventually be processed,
and will I eventually obtain an answer?”, or, from a server’s point of
view, “Will I eventually receive a request? Will my clients respect the
protocol?”.

We define two concepts, activeness (ability of sending/receiving on a
channel) and responsiveness (ability to reliably conduct a conversation),
that make the above properties precise, in particular what “eventually”
and “respect the protocol” mean. The semantic definitions are respected
by the type system, in the sense that the logical statements it outputs are
correct descriptions of the process, according to the semantics.

In process calculi, processes can make and communicate choices, a
fundamental component of data representation (where a piece of data
matches one of a set of patterns) or of object-oriented style programming
(where a call matches one method out of a set). Our types and type system
use branching and selection to capture activeness and responsiveness in
process constructs necessary for such usage patterns.

Finally, compositionality features are offered through the use of condi-
tional properties that permit analysing components of a system individu-
ally, and indicate, when applicable, what should be provided to the given
process before the properties hold.

Keywords: Pi-calculus, Liveness Properties, Choice, Responsiveness,
Type Systems.

1 Introduction

When describing a distributed or service-oriented system using mobile pro-
cesses [MPW92, SW01], it is important to provide a number of liveness guaran-
tees, such as, from a client’s point of view, “If I send a request, will it eventually
be received? Will it eventually be processed, and will I eventually obtain an
answer?”, or, from a server’s point of view, “Will I eventually receive a request?
Will my clients respect my communication protocol?”. The work we present
herein ensures these properties statically, allowing, e.g., to guarantee reliability
of actual software or distributed protocols, or to prove validity of calculus en-
codings. The main contribution of this work is an integration of choice with
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activeness and responsiveness, through a general type notation, formal seman-
tics and a sound, compositional, and decidable type system. This work has
three main ingredients:

First, activeness (ability to establish a connection) and responsiveness (abil-
ity to conduct a conversation for each connection) are liveness properties that
have been studied, in more restricted forms, under the names of receptiveness
[San99], lock-freedom [Kob02a] or responsiveness [AB08a]. Activeness is a gener-
alisation of receptiveness both because communication is not required to succeed
immediately but also because we may talk of output activeness, whereas recep-
tiveness is only for inputs. Activeness of a channel end point (henceforth called
port) is equivalent to lock-freedom of every instance of the complement port
(including those in the environment). Acciai and Boreale’s responsiveness is
actually closer to what we call activeness than to our concept of responsiveness.

Secondly, conditional properties are statements of the form ∆/ Θ, where
∆ and Θ are logical statements on channel activeness meaning that “∆ holds
provided Θ is made available (e.g. through parallel composition)”.

Thirdly, the language of processes, as well as the language of types, support
the concepts of selection (or “internal choice”) and branching (or “external
choice”), abstract descriptions of choices made and communicated by processes.

One situation where choice and responsiveness appear together is Milner’s
encoding of Boolean values in the π-calculus [Mil93], which we’ll use as running
theme throughout this paper. Values are represented as receivers on two pa-
rameter channels: True replies to queries with a signal on the first parameter
(! b(tf).t̄) while False replies on the second one (! b(tf).f̄). A Boolean is (input)
active if it is able to receive a request, and (input) responsive if it is able to reply
to all requests. Those two processes are instances of selection because they pick
one behaviour out of a set of mutually exclusive permissions, by sending a signal
to one parameter rather than to the other. A Random Boolean can be written
! b(tf).(νx) (x̄ | (x.t̄+x.f̄)), in which the selection is performed “at run-time” by
the sum (“+”). A selection made by one process may cause branching in another
process. Branching is typically implemented with the π-calculus sum operator.
In the case of Booleans this occurs when testing a value: b(νtf).(t.P+f.Q) runs
P if b is True, and Q if b is False. The following process, which we’ll use as
running example throughout this paper, implements the “r = a and b” logical
circuit.

A = ! r(tf).a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (1)

Upon receiving a request on r, process A first queries a. If it returns True
(t′) then the process returns on b the same channels received on r. If a returns
False instead (f ′), the process returns False (f̄). So, depending on a and b’s
behaviour, either a signal will be sent on t, or one will be sent on f (but never
both). We shall use this process as a running example in the course of this
paper. First by formally stating the property “r is responsive provided that
both a and b are active and responsive” into a type, then we will prove that
this statement is correct using semantic definitions, and finally, to illustrate our
type system, we will show how to automatically infer that property from the
process alone (and given that a, b and r are all Booleans).

The following example (in a π-calculus extended with numbers and a mul-
tiplication operator) implements a multiplication service that receives numbers
and returns their product. At every step the client selects to send more numbers
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(“more”) or request the result (“done”). Input (respectively, output) respon-
siveness of channel prod in this scenario means that the server (respectively, the
client) will keep progressing until reaching a terminal state, i.e. until t is sent
over r.

Server = ! prod(s).p0〈s, 1〉 | ! p0(s, t).s(νmore, done).(
more(s, n).p0〈s, t× n〉+ done(r).r〈t〉

)
Client = prod(νs).s(more, done).more(νs, 2).s(more, done).more(νs, 5).

s(more, done).done(νr).r(t).print〈t〉

To the best of our knowledge, no existing work is able to perform a static
analysis of processes like (1). The usual approach for deciding whether names are
active is to assign a single numerical level to name occurrences. But this does not
allow for conditional properties, and moreover does not deal nicely with choice
(specifically, with selection). In this case, when analysing r’s continuation, as
t̄ may never get triggered (in case r returns False), it would require an infinite
level, and similarly for f̄ . In other words, all a level-based system is able to say
is “neither t̄ nor f̄ is guaranteed to ever be fired”.

We need a typing system able to capture the fact that exactly one of t̄ and
f̄ will eventually get triggered when r is queried, and, in contrast to level-based
analysis, dependency-based systems as we have explored in the past [GR09] are
naturally expanded with choice and branching operators, to express that sort
of properties.

These three ingredients, responsiveness, choice and conditional properties,
are put together into behavioural statements. Given a process and for every
channel a channel type specifying its communication protocol, the type system
constructs a process type containing a behavioural statement describing every
property it was able to infer from the process (unless the process risks violating
constraints such as linearity or arity of a channel, in which case it is rejected).

This paper uses an incremental presentation, starting with a basic arity
checking system (Section 3) and then extending it step by step, with multi-
plicities (Section 4), choice (Section 5), and finally (Section 6) activeness and
responsiveness. At each step we provide a type syntax and algebra, precise
semantics and a type system.

A short version of this paper has previously been published as [GR10].

2 Processes

Let N be an at least countable set of channel names (often called just “names”),
ranged over by a, b, c, d, r, x, y, z. Every channel x has two ports, its input (x)
and output (x̄) end points. Letter p ranges over ports. Symmetrically a port p

has one channel given by n(p), defined as n(x)
def
= x, n(x̄)

def
= x.

2.1 Syntax

Our target process calculus is the synchronous polyadic π-calculus with guarded
sums and replication, with the grammar given in Table 1.
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Processes: P ::= (P |P )
∣∣ (νx)P

∣∣ S
∣∣ 0

Components of a parallel composition: S ::= (S+S)
∣∣ G.P

Guards: G ::= T
∣∣ !T

Non-replicated guards: T ::= (νx)T
∣∣ a(ỹ)

∣∣ a〈x̃〉

Table 1: Process Syntax

Tuples of channel names of length greater or equal to zero are denoted by
x̃, ỹ, or z̃. The arity of the tuple is the number of names in the sequence
(|x̃| = |x1 . . . xn| = n), and {x̃} denotes the set of names in the sequence.

Free names fn(P ) of a process P are defined as usual, binders being (νx)P
(binding the free occurrences of x in P ) and a(ỹ).P (binding the free occurrences
of the names in ỹ in P ).

A guard G has a subject port sub(G), a set of object names obj(G) and a set
of bound names bn(G), given by:

• sub((νz̃) a〈x̃〉) def
= ā and sub(a(ỹ))

def
= a

• obj((νz̃) a〈x̃〉) def
= {x̃} and obj(a(ỹ))

def
= {ỹ}

• bn((νz̃) a〈x̃〉) def
= {z̃} and bn(a(ỹ))

def
= {ỹ}.

Finally G has a multiplicity #(G) equal to ω if it is replicated, 1 otherwise.

2.2 Operational Semantics

In order to make some examples easier to read we shall sometimes remove unused
bindings, reorder components of a parallel composition or drop idle processes.
In other words we identify processes up to structural congruence.

Definition 2.2.1 (Structural Congruence) Structural congruence ≡ is the
smallest congruence on processes such that:

• (νx) 0 ≡ 0, and whenever x 6∈ fn(Q), (νx) (νy)P ≡ (νy) (νx)P and
((νx)P )|Q ≡ (νx) (P |Q),

• P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R,

• P+Q ≡ Q+P , P+(Q+R) ≡ (P+Q)+R, and

• If P =α Q then P ≡ Q (α-renaming).

Structural congruence is also helpful to give a succinct definition of top-
levelness (Definition A.5.5 but also Lemma A.1.4).

Definition 2.2.2 (Transition Label) Transition labels are given by

µ ::= τ
∣∣ a(x̃)

∣∣ (νz̃) a〈x̃〉

where a 6∈ z̃ ⊆ x̃.

The labels in the above definition respectively stand for silent reduction, input
and (bound) output. Whenever |z̃| = 0 we omit the binder (νz̃) .
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−

a〈x̃〉.P
a〈x̃〉
−−−−→ P

(Out)
−

a(ỹ).P
a(x̃)
−−−−→ P{x̃/̃y}

(Inp)

P
(νỹ) a〈x̃〉
−−−−−−−−→ Q z ∈ x̃ \ ({a} ∪ ỹ)

(νz)P
(νz,ỹ) a〈x̃〉
−−−−−−−−−→ Q

(Open)

P
µ−−→ P ′

!P
µ−−→ P ′ | !P (Rep)

P
µ−−→ Q z 6∈ n(µ)

(νz)P
µ−−→ (νz)Q

(New)

P
µ−−→ P ′ bn(µ) ∩ fn(Q) = ∅

P |Q µ−−→ P ′ |Q Q |P µ−−→ Q |P ′ (Par)

P
(νz̃) a〈x̃〉
−−−−−−−−→ P ′ Q

a(x̃)
−−−−→ Q′ z̃ ∩ fn(Q) = ∅

P |Q τ−−→ (νz̃) (P ′ |Q′)
Q |P τ−−→ (νz̃) (Q′ |P ′) (Com)

P
µ−−→ P ′

P+Q
µ−−→ P ′ Q+P

µ−−→ P ′
(Sum)

P =α P
′ P ′

µ−−→ Q′ Q′ =α Q

P
µ−−→ Q

(Cong)

Table 2: Labelled Transition System

Definition 2.2.3 (Transition Relation) The rules in table 2 inductively de-

fine a labelled transition relation on processes, written P
µ−−→ P ′.

Note that (νb) a〈abab〉 and a(aa) are valid transition labels. The subject
port sub(µ) and object names obj(µ) of a transition µ 6= τ are defined similarly
to those of a guard. Bound names bn(µ) of µ are given by bn((νz̃) a〈x̃〉) = {z̃},
and bn(µ) = ∅ for other cases. The set n(µ) of names in a transition is defined
as n(a(x̃)) = {x̃} ∪ {a}, n((νz̃) a〈x̃〉) = {x̃} ∪ {a} and n(τ) = ∅.

Let ⇒ denote the reflexive and transitive closure of
τ−−→, and consider that

µ̃−−→ stands for
µ1−−−→ · · · µn−−−→ for some n ≥ 0.

3 Arity Type System

In order to expose the fundamental structure of our type algebra and type
system we start with a very simple goal: a type system able to guarantee safety
of a process against arity mismatches, a goal that was first achieved by Milner
[Mil93]. In the next sections we will enrich the types and accompanying type
system with multiplicities and behavioural information.
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The basic idea for verifying a process P is safe is through a channel type
mapping (ranged by Σ) that assigns to (at least) each free name a in P a
channel type Σ(a).

Our arity type system is compositional in the sense that correctness of a
process P1|P2 with respect to a channel type mapping Σ is obtained by verifying
P1 and P2 independently against that mapping, which requires channel types
to contain enough information to describe the full behaviour of a process in
term of arity. In particular, as names passed on channels can themselves be
used as channels, it is necessary to have channel types include the types of their
parameters even if the goal is only to check for arity mismatches.

Channel types are ranged over by σ and defined as follows.

Definition 3.0.4 (Channel Type — Arity) Channel types are given by
σ ::= 〈σ1, . . . , σn〉 with n ≥ 0. Let the arity of a channel type be given by

| 〈σ1, . . . , σn〉 | = n.

Recursion ends at the parameter-less channel type λ
def
= 〈〉.

Definition 3.0.5 (Channel Type Mapping) A channel type mapping, de-
noted Σ, is a function associating channel types to names. We use the notation
Σ = {a1 : σ1, a2 : σ2, . . . } or {ã : σ̃} when defining such a mapping directly and
write ∅ for the empty mapping.

For instance the two processes a(x).x〈b〉 and a(x).x〈bc〉 respectively treat a
as having the monadic types

〈
〈σb〉

〉
and

〈
〈σb, σc〉

〉
, σb and σc being types for

b and c. Note the double pair of brackets, the inner channel types 〈σb〉 and
〈σb, σc〉 being that of the bound name x.

Channel type mappings can’t give the type of bound names in a process, so
we insert them in the process itself, by annotating binders. The P - and T - rules
from Table 1 are modified as follows:

P ::= (P |P )
∣∣ (νx : σ)P

∣∣ S
∣∣ 0

T ::= (νx : σ)T
∣∣ a(ỹ)

∣∣ a〈x̃〉
where σ indicates x’s type in P and T . We sometimes write (νx̃ : σ̃)P

or even (νΣ)P for (νx1 : σ1) . . . (νxn : σn)P , and in examples we omit the
channel type annotations when they are nor relevant. Input parameters need
not be similarly annotated, as their types can be directly obtained from the type
of the subject that carries them. Output transition labels are similarly modified
and are written (νz̃ : σ̃) a〈x̃〉 where |z̃| = |σ̃|, and the transition rules (Open),
(New) and (Com) are modified the obvious way by carrying the channel types
around. For instance (Open) works on type-annotated process as follows:

P
(νỹ:θ̃) a〈x̃〉
−−−−−−−−−→ Q z ∈ x̃ \ ({a} ∪ ỹ)

(νz : σ)P
(νz:σ,ỹ:θ̃) a〈x̃〉
−−−−−−−−−−−−→ Q

(Open)

In process (1), the (bound) channels t, f , t′ and f ′ have type λ, while r, a

and b have the Boolean channel type Bool
def
= 〈λ, λ〉. This is formalised with

the following channel type mapping

Σ = {a : Bool, b : Bool, r : Bool} (2)
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3.1 Semantics

Before proposing a type system we recall the property the type system has to
guarantee and define correctness of a channel type mapping for a process. This
definition is along the lines of the one used in Igarashi and Kobayashi’s Generic
Type System [IK01], and more permissive than that proposed in Milner’s Sorting
[Mil93] as it permits a given name to change arity as the process evolves, as in
(νa)

(
a(x).a〈bc〉.P | a〈x〉.a(de).Q

)
(where a is first used to exchange the unary

message 〈x〉 and then the binary message 〈bc〉, yet exhibits no arity mismatch
because no binary prefix can become available before the unary prefixes are
consumed). Our type systems will however enforce a fixed arity for each name,
therefore rejecting the above process.

We will then prove that existence of a correct type mapping is a sufficient
(but not necessary) condition for safety against arity mismatches.

Definition 3.1.1 (Arity Mismatch) A process P is said in error with re-
spect to arity (written badarity(P )) if P ≡ (νz̃ : σ̃) ((a(x̃).Q | a〈ỹ〉.Q′) |Q′′) for
some a, Q, Q′, Q′′, x̃, ỹ, z̃ and σ̃, where x̃ 6= ỹ.

For instance ā | a(y).P is in error with respect to arity, but none of ā | a.P ,
ā | a〈x〉.P , ā+ a(y).P and

(νx : λ) (x̄ |x.(ā | a(y).P0)) (3)

are. The first three do not attempt to make two terms communicate with
differing arities, and the last one does not attempt to do so immediately, but
will be in error after one τ -reduction, prompting for the following more useful
definition.

Definition 3.1.2 (Arity τ-Safety) A process P is said τ -safe against arity
mismatches, written |=τ

arity P , if there is no process Q such that P =⇒ Q and
badarity(Q).

Assuming process P being the one given in (3), it should be clear that

6|=τ
arity P , as P

τ−−→ Q = (νx : λ) (ā | a(y).P0) and badarity(Q).
The “τ” annotation is used because we only permit τ -reductions from P to

Q. This restriction is required because requiring safety after arbitrary labelled
transitions would mark most non-trivial processes unsafe, because mismatches
can be caused by the transitions themselves, as in the following example:

P = a(x).x〈b〉 | c(yz).Q
a(c)
−−−−→ c〈b〉 | c(yz).Q = P ′ (4)

where P ′ is in error but P is safe. However restricting ourselves to τ -safety
would be unfortunate as it amounts to treating a process as a closed system
that doesn’t interact with its environment, going against a fundamental feature
of the π-calculus, the parallel composition operator | that allows putting to-
gether independently written components. In the following section we discuss
an intermediate approach in the form of a typed transition relation.
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3.2 Dynamic Types and the Transition Operator

We describe in this section a transition operator on types to answer the following

question: If a process P has a channel type mapping Σ, and P
µ−−→ P ′, what

is the channel type mapping for P ′? The transition operator o applies the
transition label µ to Σ and returns Σ o µ as a channel type mapping for P ′, or
is undefined whenever µ should not be permitted.

Taking a closer look at (4), one can note that the channel type mapping
before the transition must be

Σ = {a :
〈
〈σb〉

〉
, c : 〈σy, σz〉} (5)

for some σb, σy and σz. A transition a(c) then amounts to attempt unifying
a’s parameter type 〈σb〉 with Σ(c) which of course can’t be done, due to the
differing number of parameters. This reasoning is formally carried out using
the following:

Definition 3.2.1 (Parameter Instantiation) Let σ = 〈σ̃〉 be an n-adic chan-
nel type and x̃ a sequence of n names such that ∀i, j: xi = xj implies σi = σj.
Then instantiating σ with x̃, written σ[x̃], yields the channel type mapping
{x1 : σ1, . . . , xn : σn}.

In the above scenario we have σa[c] = {c : 〈σb〉}.

Note that the definition required special care in case two parameters may be
the same name, to prevent a single name to be mapped to two different types.
As similar situations will happen often we introduce the following operator:

Definition 3.2.2 (Channel Type Mapping Conjunction Operator) The
conjunction of two channel type mappings Σ1 and Σ2, denoted Σ1 ∧Σ2, is well-
defined if and only if, for all x, Σ1(x) = σ1 and Σ2(x) = σ2 implies σ1 = σ2.

We then have Σ1 ∧ Σ2
def
= Σ1 ∪ Σ2.

We may now rewrite the definition for σ[x̃] as follows:

〈σ1 . . . σn〉[x1 . . . xn]
def
= {x1 : σ1} ∧ · · · ∧ {xn : σn} (6)

We are now equipped to give a definition for the transition operator:

Definition 3.2.3 (Transition Operator — Arity) Let Σ be a channel type
mapping and µ a transition label. Then the transition operator o yields, for Σ
and µ, the channel type mapping Σ o µ defined as follows:

• Σ o τ def
= Σ

• Σ o a(x̃)
def
= Σ ∧ (Σ(a))[x̃]

• Σ o (νz̃ : σ̃) a〈x̃〉 def
= Σ ∧ (Σ(a))[x̃] ∧ z̃ : σ̃

Whenever any of the involved operators isn’t well-defined we say the entire tran-
sition operator isn’t defined.
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Let us apply this operator to Σ given in (5) and the transition (4), recalled
below.

P = a(x).x〈b〉 | c(yz).Q
a(c)
−−−−→ c〈b〉 | c(yz).Q = P ′

By definition, Σ o a(c) = Σ ∧ (Σ(a))[c] = Σ ∧
〈
〈σb〉

〉
[c] = Σ ∧ {c : 〈σb〉}, which

is rejected by ∧’s definition, as Σ(c) = 〈σy, σz〉 6= 〈σb〉.

Another example, the transition A
r(uv)
−−−−−→ A′ where A is given by (1) is

modelled by Σ′ = Σ o r(uv) where Σ is given by (2). The reader may check that
applying Definition 3.2.3 results in Σ′ = {a : Bool, b : Bool, r : Bool, u : λ, v : λ}
as a type for A′.

We conclude this section with the following definition, that connects transi-
tions on type mappings and transitions on processes:

Definition 3.2.4 (Transition on Typed Processes) (Σ;P )
µ−−→ (Σ′;P ′) if

P
µ−−→ P ′ and Σ o µ is well-defined and equal to Σ′.

A pair (Σ;P ) is called a typed process.

3.3 Semantics — Channel Type Mapping

We now provide semantics of channel type mappings by way of a generalisation
of Definition 3.1.1.

Definition 3.3.1 (Typed Arity Mismatch) A typed process (Σ;P ) is said
in error (written badarity(Σ;P )) if P ≡ (νΣ′) (G.Q |R) for some Σ′, G, Q, R,
with sub(G) = a and |obj(G)| 6= |σ| where σ = Σ′(a) if a ∈ dom(Σ′) or σ = Σ(a)
if a 6∈ dom(Σ′).

If two top-level guards in a process disagree on a channel’s arity, no channel
type mapping can agree with both:

Lemma 3.3.2 Let (Σ;P ) be a typed process.
Then badarityP implies badarity(Σ;P ).

We discussed in the previous section how the transition operator rules out
transitions that could not be caused by an environment conforming to the chan-
nel types given by Σ.

We may now generalise Definition 3.1.2 to use arbitrary transition labels and
not just τ -reductions, thereby addressing the concerns given at the time.

Definition 3.3.3 (Arity Safety) A typed process (Σ;P ) is safe against arity
mismatches (written Σ |=arity P ) if

• For any sequence P
µ̃−−→ P ′ where all bound output objects in µ̃ are fresh1

and do not appear in any other transition, and all input objects are fresh
and distinct, Σ o µ̃ is well defined, and

• there is no transition sequence (Σ;P )
µ̃−−→ (Σ′;P ′) such that

badarity(Σ
′;P ′).

1A name ocurs fresh in a process P if it does not appear in any type or subprocess of P .
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−
Σ `arity 0

(E-Nil)
Σ `arity P Σ(x) = σ

(νx) Σ `arity (νx : σ)P
(E-Res)

∀i : Σi `arity Pi
Σ1 ∧ Σ2 `arity P1 |P2

(E-Par)
∀i : Σi `arity Si

Σ1 ∧ Σ2 `arity S1 +S2
(E-Sum)

Σ `arity P

{sub(G) : σ} ∧ (νbn(G))
(

Σ ∧ σ[obj(G)]
)
`arity G.P

(E-Pre)

Table 3: Arity Type System Rules

For example, (Σ;P ) given in (4) and (5) is safe against arity mismatches
(assuming Q is), because setting a’s object to a fresh name we get Σ o a(d) =
Σ ∧ {d : 〈σb〉} = Σ ∪ {d : 〈σb〉}. On the other hand a(b).(b(x) | b〈yz〉) is not safe
because even with a fresh parameter an input on a leads to a process in error.
Note that the latter process is (vacuously) τ -safe, however.

The following lemma is easily shown by contraposition, as P
τ−−→ Q implies

(Σ;P )
τ−−→ (Σ;Q) for any Σ.

Lemma 3.3.4 Let (Σ;P ) be a typed process.
Then Σ |=arity P implies |=τ

arity P .

3.4 Type System

We now propose a type system that provides a sound and decidable character-
isation of safety from arity mismatches.

Definition 3.4.1 (Arity Type System) Typability of a typed process (Σ;P )
with respect to arity, written Σ `arity P , is inductively given by the rules in
Table 3.

All operators covered in the above rules have been covered before, with
the exception of restriction, used in (E-Res) and (E-Pre), that mirrors the
corresponding process constructor by dropping the type of the channel being
bound.

Definition 3.4.2 (Restriction of a Channel Type Mapping) Let Σ be a

channel type mapping and x a name contained in dom(Σ). Then (νx) Σ
def
=

Σ \ {x : Σ(x)} (where \ is the set subtraction operator).

Properties. Like all type systems covered in this paper, the arity type system
enjoys a number of properties. We only state them here without proof, as they
are consequences of the corresponding properties of the most general type system
given in Section 6.

Structurally congruent processes can be typed the same way (which is one
reason processes can safely be identified up to structural congruence):

Proposition 3.4.3 (Subject Congruence) If Σ `arity P ≡ P ′ then Σ `arity
P ′.

10



This is a consequence of Proposition 7.3.1 on page 51.
As far as typability is concerned, the transition operator correctly predicts

the evolution of a process. If µ = τ then Σ o µ = Σ and this proposition shows
that the type of a process remains valid when the process is reduced.

Proposition 3.4.4 (Subject Reduction) Let Σ `arity P and (Σ;P )
µ−−→

(Σ′;P ′). Then Σ′ `arity P ′

This is a consequence of Proposition 7.3.2, proved in Section A.3.
The arity type system is sound in the following sense:

Proposition 3.4.5 (Arity Type System Soundness) For any typed process
(Σ;P ), Σ `arity P implies Σ |=arity P .

This is a consequence of Proposition 7.3.4, proved in Section A.5.

4 Multiplicities

In this section we enrich the type grammar, type algebra and type system to
incorporate multiplicities. Consider the following scenario:

A process A wants to transmit a value v to a process B, which then sends
a reference to the same value to process C. Rather than transmitting the full
data in the first message, A actually creates a process [[ v ]]u encoding the value
v and providing access to its content through channel u, and sends the name u
to B. B then sends the same name u to C:

A | B | C = b(νu).[[ v ]]u | b(x).c〈x〉 | c(y). . . .

Both B and C, to decode the value, can send a message on u, which is then
replied to by A. However C now has the potential to change the value v as it
appears to B, by creating another receiver on u:

C = c(y).! y(. . . ). . . .

Now, if the scheduler is fair, on average one half of the decoding requests sent
by B will actually be intercepted by C. To avoid this, the process B would
have to send a new channel u′ to C and run a forwarder u′ � u.2 Another way
which we are going to explore in this section is to constrain the multiplicities
[KPT99, San99] of channel u.

Multiplicities, in their most general form, tell for a channel how many times
it may appear in input (respectively, output) subject position. For instance,
both ports of a are used once in a|(νb) b.ā (even though one is deadlocked), and
a’s input is used once and b not used at all in (νcd) (c〈a〉 | d〈b〉 | c(x).x | d(y).0).
We also need to distinguish whether an occurrence is replicated (as a in ! a(x).x̄)
or not.

The issue in the above scenario can now be solved simply by declaring that
u’s input port has precisely one (replicated) occurrence in subject position,
rendering C unable to create one more occurrence without being rejected by a
type checker.

That scenario involves the following multiplicities:

2That resends all message received on u to u′: !u(z).u′〈z〉.
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1. Uniform [San99] or ω names such as u in the example have one replicated
input and an arbitrary number of outputs, replicated or not.

2. A decoding request is a message of the form u〈l〉 where l is affine [HY02],
meaning that it may occur at most once in output (for the u-server to
send a reply) and exactly once in input (for the request sender to receive
the reply).

3. Plain names are those that do not have any requirement.

Other cases may occur, as in the internal choice encoding ā | a.P | a.Q where
the output port must occur exactly once, and the input port at least once.

Rather than constructing a list of such channel classes we choose to define
port multiplicities (ranged over by m), and record multiplicities independently
for input and output ports. To cover the cases seen so far we need three mul-
tiplicities: 1, ω and ?, standing respectively for “at most one non-replicated
use”, “at most one replicated use” and “unconstrained”.3 We will also need a
multiplicity 0 for ports that must not be used at all.

4.1 Channel Types

Before proceeding further let us generalise channel types (Definition 3.0.4) to
include multiplicities. We choose a notation that ensures channel types remain
constant over time (are preserved by transition) and space (preserved by com-
position). However neither of these properties hold for multiplicities.

For instance (a being assumed linear, and separating multiplicities of the

process and those of its environment with the symbol “J”), in a|b a−−→ b, a’s

multiplicities evolve as a1, ā0 J a0, ā1 −→ a0, ā0 J a0, ā0, and in a|ā τ−−→ 0, they
evolve as a1, ā1 J a0, ā0 −→ a0, ā0 J a0, ā0.

Multiplicities aren’t preserved by composition either. For instance, in P =
(a | b | ā), a has multiplicities a1, ā0 J a0, ā1 in the first component, a0, ā0 J
a1, ā1 in the second, and a0, ā1 J a1, ā0 in the third. In P , a has multiplicities
a1, ā1 J a0, ā0. So, in a single process, a single channel has four different sets
of multiplicities.

All these considerations suggest separating channel types and channel mul-
tiplicities, so that a channel type contains multiplicity information for its pa-
rameters, but not its own multiplicities. We write pm to express the fact that
port p has multiplicity m, and refer to parameter channels by their number,
starting from 1. For instance 2̄ω states that the output port of the channel’s
second parameter must appear at most once, and that single occurrence must
be replicated.

All examples we have considered so far have been input-output-alternating,
in that input processes only output on their parameters, and an output a〈b〉
may only prefix or be composed with inputs at b. If that were always the case
we could write a channel type as a pair

σ ::=
〈
σ̃; p̃m̃

〉
(7)

3Lower bounds to express multiplicities like “At least once” or “Exactly once” are obtained
using activeness as shown later.
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where the first component gives the types of the parameters and the second
component associates multiplicities mi to parameter ports pi.

However, not all process satisfy that alternation property, and (7) is not
sufficient to accurately describe such cases. For instance a “server creator”
! a(x).!x(y).Q creates a one parameter server with body Q on all names sent
to it. In that example, a’s input uses its parameter’s input capabilities and
therefore a’s type is not alternating. Following (7) we’d get something like
〈σ; 1ω, 1̄?〉 as a type for a, but that type doesn’t express the fact that 1ω should
be provided by a’s input and not its output: exactly the same type would be
given for a〈b〉.! b(y).Q where the input on x is provided by the output of a, and
yet composing these two processes no longer respects the channel type.

Giving up the input-output-alternation property requires adding information
to channel types as to how uses of the parameters are divided between the input
and output side of the channel. We arrive at the following final notation for
channel types with multiplicities:

σ ::= 〈σ̃; ξI; ξO〉 (8)

where ξI is a set of parameter multiplicities that the channel’s input receivers
may use, and ξO those that the output prefixes may use.

To explicitly write such a set of multiplicities we use the notation p1
m1∧. . .∧

pn
mn , where all pi must be pairwise disjoint and “∧” is read “and”. An empty

set is denoted >. We chose this notation inspired from propositional logic to
have it easily extended in Section 5 with other logic connectives. This separation
of parameter multiplicities into ξI and ξO is also useful because it can easily be
adapted to express the interface between a process and its environment, as we
will see in the next section.

For instance, consider a two linear parameter channel a, whose first param-
eter is alternating and second is not:

a(xy).(x̄|y) | a〈bc〉.(b|c̄) (9)

The input on a uses the first parameter (denoted 1, appearing as b and x in
(9)) with multiplicities 10 ∧ 1̄1, and the a-output uses that first parameter with
multiplicities 11∧1̄0. The second parameter (2, c and y) has multiplicities 21∧2̄0

on a’s input and 20 ∧ 2̄1 on a’s output, which is all packed together into the
following channel type for a:

a :
〈
λ, λ ; 10 ∧ 1̄1 ∧ 21 ∧ 2̄0 ; 11 ∧ 1̄0 ∧ 20 ∧ 2̄1

〉
Note that a’s multiplicities appear nowhere in that statement.

Even though in this example the parameter multiplicities look very sym-
metric they need not be so. For instance the type

〈
λ; 10 ∧ 1̄?; 1? ∧ 1̄?

〉
is for a

channel whose input side may only use the parameter in output position, but
whose output may use the parameter without restrictions. Also note that even
though ω is most commonly associated with channel inputs it does not need to
be. For instance when a channel is used as a “value provider” where one process
is responsible for providing a constant or the address of some service (“v := 42”
is encoded as ! v〈42〉) and any process interested in knowing the constant value
or the service address may do a v-input (v(x).P where P may use that value or
address as x), it is expected that one v-output always be available (v̄ω), while
inputs are not restricted (v?).
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4.2 Process Types

In this section we propose a way to use the channel type notation to describe
entire processes, with process types.

To explain the similarity between channel and process types we consider the
interface between a process P and its environment as a special kind of channel
whose parameters are the names free in the process. For instance if z̃ = fn(P )
and a is a fresh name, then P ’s process type is a’s channel type in a(z̃).P . E
being a process representing the environment, interaction between P and E may

then be modelled as τ -reductions following a(νz̃).E | a(z̃).P
τ−−→ (νz̃) (E |P ).

We adapt the previously introduced channel type notation (8) for process
types. Parameters 1, 2 etc become pairwise distinct channel names zi free
in the process being abstracted and we replace the second semi-colon by “J”
to explicitly mark the process/environment interface. This gives the following
notation for a process type, ranged over by Γ:

(Σ ; ΞL J ΞE) (10)

where ΞL and ΞE, both of the form
∧
z∈dom(Σ)

(
zi
mi ∧ zim

′
i

)
, respectively tell

how the channel usages are divided between local (P ) and environment (E).
Consider for example the process P = !u(x).x̄. Wrapping it into an input

as described above gives a(u).P . In that process, the channel type for a is〈〈
λ; 10 ∧ 1̄1; 11 ∧ 1̄0

〉
; 1ω ∧ 1̄0; 10 ∧ 1̄?

〉
which is transformed into a process type for P as follows:(

u :
〈
λ; 10 ∧ 1̄1; 11 ∧ 1̄0

〉
;uω ∧ ū0 J u0 ∧ ū?

)
Now consider a process E = u〈t〉.t acting as the environment for P . The in-

teraction P
u(t)
−−−−→ P |t̄ t̄−−→ P with that process corresponds to the reduction

a(u).P | a(νu).E −→ (νu)
(
(!u(x).x̄) | (u〈t〉.t)

)
−→ (νu)

(
(P |t̄) | t

)
−→ (νu)

(
P |0

)
.

The process type for the intermediary form P |t̄ would be(
u : σu, t : λ ; t0 ∧ t̄1 J t1 ∧ t̄0

)
where σu is u’s type seen before.

Finally, after t has been consumed, we get(
u : σu, t : λ ; t0 ∧ t̄0 J t0 ∧ t̄0

)
expressing the fact that t has been fully used. If, for completeness, we wanted
to mention t in the type for P before the first transition, it would have been(

. . . , t : λ ; . . . ∧ t0 ∧ t̄0 J . . . ∧ t1 ∧ t̄1
)

expressing the fact that it may not be used in any way by the process, and the
environment may use both ports exactly once. The first transition can now be
seen as E passing t’s output capability to P .(

t : λ; t0 ∧ t̄0 J t1 ∧ t̄1
)
−→
(
t : λ; t0 ∧ t̄1 J t1 ∧ t̄0

)
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The type of process (1) with multiplicity information is given by

Γ =
(
a : Bool, b : Bool, r : Bool;

rω ∧ r̄0 ∧ a0 ∧ ā? ∧ b0 ∧ b̄? J r0 ∧ r̄? ∧ aω ∧ ā? ∧ bω ∧ b̄?
)

(11)

where
Bool

def
=
〈
λ, λ; 10 ∧ 1̄1 ∧ 20 ∧ 2̄1; 11 ∧ 1̄0 ∧ 21 ∧ 2̄0

〉
As exhaustive process types can become rather verbose, we shall from now

on use the following simplifying conventions:

Convention 4.2.1 (Notation for Multiplicities)

1. In channel types, and in the local component of process types, any port
whose multiplicity is not specified is assumed to have multiplicity 0.

2. Exponents equal to one may be omitted.

3. In addition, the local component ΞL of a process type with channel type
mapping Σ should be understood as follows:

ΞL ∧
∧

x∈N\dom(Σ)

(
x0 ∧ x̄0

)
For instance we write ā instead of ā1.
The empty, or neutral, type (∅;> J >) describes the idle process 0, or

any process with no free names, by analogy with the parameter-less channel λ.
No channels a need be mentioned, as all have local multiplicity zero in both
ports and remote multiplicity ? for both ports, expressing the fact that the
environment has, by default, no constraints on the way it may use the channel.

The goal of statements like p? (“p is used no more than an infinite num-
ber of times”), logically equivalent to >, is actually just to prevent the above
convention from applying.

In that simpler notation, (11) may be written

Γ =
(
a : Bool, b : Bool, r : Bool; rω ∧ ā? ∧ b̄? J r0 ∧ aω ∧ bω

)
(12)

where
Bool

def
= 〈λ, λ; 1̄ ∧ 2̄; 1 ∧ 2〉

4.3 Algebra

We now extend the operators and relations seen in the previous section for
channel type mappings to work with process types.

We start with a weakening relation. A type is weaker than another one if it
describes at least all processes described by the latter (and strictly weaker if it
describes processes the latter doesn’t).

Definition 4.3.1 (Weakening — Multiplicities) The weakening relation �
on process types is the least reflexive and transitive relation such that:

• For all p and m, p0 � pm � p?
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•
∧
i∈I pi

mi �
∧
i∈I pi

m′
i iff ∀i ∈ I : pi

mi � pim
′
i .

• (Σ; ΞL J ΞE) � (Σ′; Ξ′L J Ξ′E) iff Σ ⊆ Σ′, ΞL � Ξ′L and ΞE � Ξ′E.

The conjunction and disjunction operators ∧∗ and ∨∗ denote the correspond-
ing meet and join operators. When Ξ1 � Ξ2 we say Ξ1 is weaker than Ξ2, and
Ξ2 stronger than Ξ1.

We put a mark in “∧∗” to distinguish it from “∧”: “p1
m1 ∧ p2

m2” stands
for the multiplicity set {p1

m1 , p2
m2} as described in the previous section, while

“p1
m1∧∗p2

m2” stands for the weakest ξ that satisfies ξ � pimi for both i ∈ {1, 2}.
However the following lemma shows the distinction is actually unnecessary be-
cause as long as p1 6= p2 those two processes are equal. We will therefore use
“∧” indifferently for both senses of the symbol in the remainder of this paper.

Lemma 4.3.2 (Joining Disjoint Multiplicity Sets) For all port pairs p 6=
q and multiplicities m, m′: pm ∧∗ qm′

= pm ∧ qm′
. More generally, if {pi}i∈I1 ∩

{pi}i∈I2 = ∅ then
(∧

i∈I1 pi
mi
)
∧∗
(∧

i∈I2 pi
mi
)

=
(∧

i∈I1∪I2 pi
mi
)
.

Proof Using Convention 4.2.1, pm ∧∗ qm′ def
= (pm ∧ q0) ∧∗ (p0 ∧ qm′

).
By definition of ∧∗, pm ∧∗ p0 = pm, so (pm ∧ q0) ∧∗ (p0 ∧ qm′

) = pm ∧ qm′
.

The generalisation is similar. 2

We proceed with an operator that, given the types of two processes, com-
putes the types of their parallel composition. This was done with ∧ in the
previous section when working with channel type mappings, but when working
with multiplicities we need to add multiplicities.

A port p having multiplicities m1 and m2 in respectively P1 and P2 has
multiplicity m1 +m2 in P1 |P2:

Definition 4.3.3 (Multiplicity Addition and Subtraction) Multiplicity ad-
dition m+m′, has 0 as a neutral element, and returns ? for any pair of non-zero
multiplicities.

Multiplicity subtraction m−m1 is the largest m2 such that m1 +m2 = m,
using the ordering ∀m : 0 ≤ m ≤ ?.

For instance, 1 + ω = ? but ? − 1 = ? and ω − 1 is not defined because
there is no m such that m+ 1 = ω. The following Lemma gives a direct way of
computing subtraction:

Lemma 4.3.4 (Multiplicity Subtraction and Properties)

• ∀m : ?−m = ?

• ∀m : m− 0 = m.

• If m 6= ?, m−m = 0.

• Unless covered in the above three cases, m−m′ is undefined.

• For all m, m′: (m+m′)−m′ is well-defined and larger or equal to m.

• ({0, 1, ω, ?}; +) is a monoid.

We define composition on sets of multiplicities before lifting it to full process
types.
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Definition 4.3.5 (Multiplicity Set Composition, Subtraction) Composition
of multiplicity sets is done by the binary operator � defined as follows, where
pi 6= pj for all i 6= j: ∧

i∈I
pi
mi �

∧
i∈I

pi
m′
i

def
=
∧
i∈I

pi
mi+m

′
i

Subtraction of multiplicity sets is done by the binary operator \ and defined
as follows, where pi 6= pj for all i 6= j:∧

i∈I
pi
mi \

∧
i∈I

pi
m′
i

def
=
∧
i∈I

pi
mi−m′

i

The first point of Convention 4.2.1 permits generalising this definition for
types with different domains of Σ. For instance:

(a∧b)�(b∧c) = (a1∧b1∧c0)�(a0∧b1∧c1) = a1+0∧b1+1∧c0+1 = a1∧b?∧c1,
and similarly (a1∧b?∧c1)\(b1∧c1) = a1−0∧b?−1∧c1−1 = a1∧b?∧c0 = a1∧b?.

Subtraction and composition of behavioural statements are connected by the
following property:

Lemma 4.3.6 (Subtraction Properties) For any three statements ∆1, ∆2

and ∆3:
∆1 \ (∆2 �∆3) ∼= (∆1 \∆2) \∆3

The proof is given in Section A.1.6, as part of the proof of Lemma 4.3.8 below.
We will now describe composition of full process types. This operation builds

upon two intuitions:

1. The local component of the whole is the composition of the local compo-
nents of the parts.

2. The environment of the whole is the environment of one part, without the
local component of the other part.

Formally:

Definition 4.3.7 (Process Type Composition — Multiplicities) The pro-
cess type composition operator � is defined as follows:

Let Γi = (Σi; ΞLi J ΞEi) with i = 1, 2. Then

Γ1 � Γ2
def
= (Σ1 ∧ Σ2 ; ΞL1 � ΞL2 J (ΞE1 \ ΞL2) ∧∗ (ΞE2 \ ΞL1))

For instance, for the composition (x|y) | (ȳ|z̄), all channels being linear:(
x : λ, y : λ ; x ∧ y J x0 ∧ x̄ ∧ y0 ∧ ȳ

)
�(

y : λ, z : λ ; ȳ ∧ z̄ J y ∧ ȳ0 ∧ z ∧ z̄0
)

=(
Σ ; x ∧ y ∧ ȳ ∧ z̄ J x0 ∧ x̄ ∧ y0 ∧ ȳ0 ∧ z ∧ z̄0

)
,

where Σ = {x : λ, y : λ, z : λ}, the local component is

(x ∧ y ∧ ȳ0 ∧ z̄0)� (x0 ∧ y0 ∧ ȳ ∧ z̄0) = x1+0 ∧ y1+0 ∧ ȳ0+1 ∧ z̄0+1,

and the environment component

(x0 ∧ x̄ ∧ y0 ∧ ȳ) \ (ȳ ∧ z̄) ∧ (y ∧ ȳ0 ∧ z ∧ z̄0) \ (x ∧ y) =

(x0 ∧ x̄ ∧ y0 ∧ ȳ1−1) ∧ (y1−1 ∧ ȳ0 ∧ z ∧ z̄0).
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Lemma 4.3.8 (Composition Properties) The � operator is commutative
and associative and has element (∅;> J >) as a neutral element.

The proof for the general case (types including dependency statements) is given
in Section A.1.6. Lemma A.1.5 on page 65 gives more properties of the �
operator.

We now generalise the σ[x̃] operator given in Definition 3.2.1 to apply on
types with multiplicities, as a first step to similaly generalising the transition
operator of Definition 3.2.3.

Special care is taken in case two xi may be equal by separating all param-
eters, doing the substitution and then composing the resulting process types
with the � composition operator, much like (6).

Slicing a channel type into parameters is done with a slicing operator that
is defined much like restriction of a function, and uses the same notation:

Definition 4.3.9 (Channel Type Slicing) The ith slice of a channel type,
written ξ|i where i is a parameter number, is a process type inductively defined
as follows:

(im ∧ ı̄m′ ∧
∧
j∈J pj

mj )|i
def
= im ∧ ı̄m′

where ∀j ∈ J : n(pj) 6= i.

〈σ̃; ξI; ξO〉 |i
def
= (i : σi; ξI|i J ξO|i).

Definition 4.3.10 (Process Type Complement) Let Γ = (Σ; ΞL J ΞE) be
a process type. Its complement Γ is then (Σ; ΞE J ΞL).

Definition 4.3.11 (Channel Instantiation) Let σ be an n-ary channel type.
Let x̃ be a sequence of n names.

Input-instantiating σ with x̃ (written σ[x̃]) yields the process type

σ
∣∣
1
{x̃/1...n} � · · · � σ

∣∣
n
{x̃/1...n}

Output-instantiating σ with x̃ (written σ̄[x̃]) is such that σ̄[x̃] = σ[x̃].

Substitutions apply on entire process types as expected.

Example. Let σ = 〈λλ; 1̄ ∧ 2; 1 ∧ 2̄〉. Then

σ[x, y] = (x : λ; x̄ J x)� (y : λ; y J ȳ) = (x : λ, y : λ; x̄ ∧ y J x ∧ ȳ)

In that example (and indeed every time all parameters are distinct), σ[x, y] is
essentially equal to σ{x̃/1...n}. Performing a �-composition is necessary if two
xi may be equal: Keeping the same σ, σ[x, x] = (x : λ; x̄ J x)� (x : λ;x J x̄) =〈
x : λ;x ∧ x̄;x0 ∧ x̄0

〉
. In this case, the input does both the input and the output

at x, and the output does not interact at it, as told by the x0, x̄0 part. For

example, a(xy).(x̄ | y) | (νb) a〈bb〉.0 τ−−→ b̄ | b, where b’s linearity is respected.
Proceeding to the transition operator, we start with a definition for transi-

tions without parameters:

Definition 4.3.12 (p-Reduction — Multiplicities) Let Γ be a process type
and p a port. Then the Γ o p operation is inductively defined as follows:

• pm o q =

 undefined if p = q and m = 0
p0 if p = q and m = 1
pm if p 6= q or m ∈ {ω, ?}
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• (
∧
i ξi) o p

def
=
∧
i (ξi o p)

• If Γ = (Σ; Ξ1 J Ξ2) then Γ o p def
= (Σ; Ξ1 o p J Ξ2 o p̄) (if either of those

two operations is undefined then so is Γ o p).

On behavioural statements, Ξ o p is similar but not quite the same as sub-
traction Ξ \ p1 (Definition 4.3.7). The former simulates a transition, and in

particular pω o p = pω matches ! p
p−−→ ! p. The latter attempts to “cancel” an

application of the � operator, and in particular pω \ p is undefined because the
Ξ � p = pω equation has no solution (remember that ! p 6≡ p | ! p as the right
hand side has type p?).

As an illustration we show on (12) how querying a replicated server has no
effect on its availability:

(Σ; rω J r̄? ∧ aω ∧ bω) o r = (Σ; rω o r J (r̄? ∧ aω ∧ bω) o r̄)
= (Σ; rω J r̄? ∧ aω ∧ bω)

based on rω o r = rω and r̄? o r̄ = r̄?, from the definition.
An application of the transition operator is not well-defined when it corre-

sponds to an action that no well-typed third-party process would be able to
do:

Definition 4.3.13 (Observability) A port p is observable in a process type
Γ (written Γ↓p) if Γ o p is well-defined.

To simulate an output transition, one needs to apply the � operator but
with ΞL and ΞE’s roles exchanged.

Definition 4.3.14 (Output Composition) The output composition opera-
tor ⊗ on process types is the binary operator such that Γ1 ⊗ Γ2 = Γ1 � Γ2.

Finally, like in Definition 3.2.3 we need to ensure channel type annotations
on bound output objects match the subject type. We write Γ ∧ Σ to mean
Γ� (Σ;> J >).

We are now ready to generalise Definition 3.2.3 to process types:

Definition 4.3.15 (Transition Operator — Multiplicities) Γ = (Σ; ΞL J ΞE)
being a process type with Σ(a) = σ, the effect of a transition µ on Γ is Γ o µ,
defined as follows.

• Γ o τ def
= Γ,

• Γ o a(x̃)
def
= Γ o a� σ[x̃],

• Γ o (νz̃ : σ̃) a〈x̃〉 def
= Γ o ā ⊗ σ̄[x̃] ∧ (z̃ : σ̃).

With the following Lemma we show that our goal of having channel types
preserved in time and space is satisfied.
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Lemma 4.3.16 (Channel Types are Constant) Let Γ be a process type with
channel type mapping Σ and a ∈ dom(Σ).

For any Γ′ such that Γ2 = Γ�Γ′ is well defined, Σ2 being Γ2’s channel type
mapping, Σ(a) = Σ2(a).

For any µ such that Γ2 = Γ o µ is well defined, Σ2 being Γ2’s channel type
mapping, Σ(a) = Σ2(a).

The Lemma is an immediate consequence of (Σ ∧Σ′) being well-defined only if
Σ and Σ′ give equal types for common names (Definition 3.2.2).

4.4 Semantics

The semantics of process types with respect to a given process follows Defini-
tion 3.3.3 but with Γ instead of Σ, permits loosening of environment multiplic-
ities, and enforces uniformity of ω:

Definition 4.4.1 (Simple Semantics) Multiplicities and channel types in a

typed process (Γ;P ) are correct (written Γ |=# P ) if, for any sequence (Γ;P )
µ̃−−→

(Γ′;P ′) with Γ′ = (Σ; ΞL J ΞE), the following properties are satisfied:

1. dom(Σ) ⊇ fn(P ′).

2. If P ′
µ−−→ P ′′ then there is Γ+ and µ′ such that (Γ+;P ′)

µ′

−−−→ (Γ+ oµ′;P ′′)
for some P ′′, where µ′ is obtained from µ by replacing bound objects by
fresh names (all distinct in case of inputs), and Γ+ = (Σ; ΞL J ΞE � p̃?)
for some p̃.

3. Let P ′
µ−−→ P ′′ with p = sub(µ). If pω � ΞL then the derivation for P

µ−−→
P ′ must have used (Rep) at some point (i.e. the prefix being consumed in

P must be replicated) and ∃! Q s.t. P ′
µ−−→ Q (up to =α).

Point 1 says each free name has a declared type. Point 2 ensures that any
transition existing in the process has a corresponding transition in the typed
process (which is only possible if the local multiplicities are large enough and
if parameter types match). Input objects are replaced by fresh ones to replace
transitions like (4) by valid ones and some remote multiplicities are replaced
by ? to be able to inspect the components of τ -transitions — for instance we
can show that (Γ;P ) is correct when Γ =

(
l : λ; l1 ∧ l̄1 J l0 ∧ l̄0

)
and P = l|l̄ by

setting Γ+ =
(
l : λ; l1 ∧ l̄1 J l? ∧ l̄?

)
and checking both P

l−−→ and P
l̄−−→. By

contrast, (
(
l : λ; l1 ∧ l̄0 J l0 ∧ l̄0

)
;P ) is not correct because then Γ+ o l̄ = ⊥ and

thus P
l̄−−→ has no corresponding transition from (Γ+;P ).

Point 3 enforces uniform availability [San99] of ω names, and prevents a to
be marked uniform in ! a(x).A | ! a(x).B, because there would be two possible
processes resulting from the transition µ = a(b) rather than one, as required.

From now on we will assume (and, whenever needed, prove!) that multiplic-
ities and channel types in all typed processes being considered are correct.

Lemma 4.4.2 (Simple Correctness and Structural Equivalence)
Let Γ |=# P . If Γ � Γ′ and P ≡ P ′ then Γ′ |=# P ′ as well.
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See Section A.2.1 for the proof.

Lemma 4.4.3 (Semantics Compositionality) Let Γi |=# Pi for both i =
1, 2, and Γ = Γ1 � Γ2 be well defined. Then Γ |=# P1 |P2.

We conjecture that the corresponding property holds for all semantic defi-
nitions used in this paper, but the proofs becomes difficult for types involving
dependency statements (Chapter 6). Soundness of the type systems, however,
implies that property whenever both Γi are accepted by the type system for Pi.

4.5 Type System

The type system rules are nearly identical to the ones for arity given in Table 3,
except that they work with process types rather than plain channel type map-
pings, and (as a base for computing multiplicities) the prefix rule contains an
extra term for adding subject multiplicities.

Definition 4.5.1 (Multiplicity Type System) Typability of a typed process
(Σ;P ) with respect to multiplicity, written Σ `# P , is inductively given by the
rules in Table 4.

Note how the arity type system was idempotent in its treatment of parallel
composition and replication, that is P , P | P and !P were all treated the
same way. This is of course no longer the case in the multiplicity type system
which is all about counting name occurrences. The counting in the P | P case is
implemented through the � operator. When typing a replicated process ! a(ỹ).P
or ! (νz̃) a〈x̃〉.P , #(G) is ω and parts of the type related to parameters or to
the continuation must be replicated.

Lemma 4.5.2 (Existence of Replication) Let Γ be a process type. Then
there is a natural number n such that either Γn is not well defined or Γn ∼= Γn+1

(where Γ1 def
= Γ and Γn+1 def

= Γn � Γ).

In the system exposed in this section, n = 2 always satisfies the requirements,
but as we enrich the types in the next sections, larger numbers may become
necessary.

This lemma implies that repeatedly composing a process type with itself
reaches a eventually stabilises, which gives a practical way to compute “Γω”, a
fix point of the x 7→ (x� Γ) function.

Definition 4.5.3 (Process Type Replication) Replication of a process type

Γ is defined with the following rule: Γω
def
= Γn where n is a value satisfying the

lemma above.

For instance when typing ! a〈b〉.c we obtain the multiplicities āω� (b̄1 � c1)
ω

=
āω ∧ b̄? ∧ c?, assuming a has the usual input-output-alternating type.

Much like the arity type system the (M-Res) rule binds the channel in the
process type with a generalisation of Definition 3.4.2, which amounts to forcing
it not to be used in the environment, i.e. setting its environment multiplicities
to zero:
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−
(∅;> J >) `# 0

(M-Nil)
Γ `# P Γ(x) = σ

(νx) Γ `# (νx : σ)P
(M-Res)

∀i : Γi `# Pi
Γ1 � Γ2 `# P1 |P2

(M-Par)
∀i : (Σi; ΞLi J ΞEi) `# Si(∧

i Σi;
∨∗
i ΞLi J

∧∗
i ΞEi

)
`# S1 +S2

(M-Sum)

Γ `# P sub(G) = p obj(G) = x̃(
p : σ; J pm ∧ p̄m′

)
�(

; p#(G) J
)
�

(νbn(G))
(

Γ �

σ[x̃]
)#(G)

`# G.P

(M-Pre)

Table 4: Multiplicity Type System Rules

Definition 4.5.4 (Binding — Multiplicities) The binding operator (νx) acts
on sets of multiplicities as follows:

(νx)
∧
i∈I

pi
mi def

=
∧

i∈I:n(pi)6=x

pi
mi

Binding a name x in a process type Γ is perfomed as follows:

(νx) (Σ; ΞL J ΞE)
def
= ((νx) Σ; (νx) ΞL J (νx) ΞE)

Properties. The properties given on page 10 are generalised as follows:

Proposition 4.5.5 (Subject Congruence) Let Γ `# P ≡ P ′. Then Γ `#

P ′.

This is a consequence of Proposition 7.3.1 on page 51.

Proposition 4.5.6 (Subject Reduction) Let (Γ;P ) be a typed process such

that Γ `# P . Then, for any transition (Γ;P )
µ−−→ (Γ oµ;P ′), ∃Γ′ s.t. Γ′ � Γ oµ

and Γ′ `# P ′.

This is a consequence of Proposition 7.3.2, proved in Section A.3.

Proposition 4.5.7 (Decidability) There is a decidable algorithm that, given
a channel type mapping Σ and a process P , either constructs a process type
Γ = (Σ; ΞL J ΞE) where Γ `# P or, if there is no such Γ, rejects the process.

This is a consequence of Proposition 7.3.3, proved on page 51.

Proposition 4.5.8 (Type Soundness) If Γ `# P then Γ |=# P .

This is a consequence of Proposition 7.3.4, proved in Section A.5.
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4.6 Type System Tuning

Examining the type system, one can notice that one rule is not completely
specified, namely (M-Pre) does not specify how to obtain m and m′. No
matter how these are obtained the type system is sound, and so we left them
unspecified to permit some tuning of the type system behaviour. We suggest a
few ways of choosing multiplicities.

Consider the process P = a.b|ā.

• The simplest way is to always set m = m′ = ? in (M-Pre), but since
the environment is given lots of freedom, processes can only be given
few guarantees. For instance in P , none of a, ā or b are active, as any
attempt to access any of them could be broken by a third-party process
(
(
a1 ∧ ā1 ∧ b1 ∧ b0 J a? ∧ ā? ∧ b? ∧ b̄?

)
` P )

• The other extreme is to run the type system twice, first to record the
multiplicities obtained in ΞL, and then using those as values for m and
m′ in the second run. This basically gives the environment as little
permissions as possible, actually so little that in P , none of a, ā or
b are active because the environment is not permitted to access them
(
(
a1 ∧ ā1 ∧ b1 ∧ b̄0 J a0 ∧ ā0 ∧ b0 ∧ b̄0

)
` P )

• A more interesting middle-ground is to do the above but replacing any pω∧
p̄m by pω∧ p̄?, and p1∧ p̄0 by p1∧ p̄1. Now in P , both a and b are assumed
linear, and b is found active:

(
a1 ∧ ā1 ∧ b1A ∧ b̄0 J a0 ∧ ā0 ∧ b0 ∧ b̄1

)
` P .

No matter which of the above variants is chosen it may at times be desir-
able to override the default behaviour, for instance through annotations in the
process.

5 Choice

In process calculi, processes can make and communicate choices, a fundamental
component of data representation (where a piece of data matches one of a set
of patterns), of object-oriented style programming (where a call matches one
method out of a set), or of session-based programming (during a conversation
between a client and a server, both sides are at times permitted to drive the
protocol one way or another). We shall use branching and selection to capture
properties in process constructs necessary for such usage patterns. For example,
process (1), after sending the a〈t′f ′〉 query, performs a branching between t′ and
f ′ guided by the reply to its request, using the “+” π-calculus operator. If a
replies through f ′, the process selects f̄ out of the set of admissible behaviours
t̄ and f̄ . If a replies through t′, (1) delegates the selection to b.

We now extend the types defined in the previous section to describe choices
made by processes. The key idea is to introduce a ∨-connective into multiplicity
sets. Due to the similarity with a logical statement we call them behavioural
statements:

Definition 5.0.1 (Behavioural statement — Choice) A behavioural state-
ment is an expression of the form

ξ,Ξ ::= pm
∣∣ (Ξ ∨ Ξ)

∣∣ (Ξ ∧ Ξ)
∣∣ ⊥ ∣∣ > (13)
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where ξ ranges over statements containing only parameter numbers and Ξ over
statements containing channel names.

Intuitively, selection Ξ1 ∨ Ξ2 is correct if one of the Ξi is, conjunction Ξ1 ∧
Ξ2 if both Ξi are. > always holds and ⊥ never does. The formal semantics
follow Definition 4.4.1, but where the operators have been extended to deal
with disjunction, as covered in the following section.

5.1 Algebra

The weakening relation given in Definition 4.3.1 is generalised to permit increas-
ing dependencies as well as rearranging items in a behavioural statement, much
like ≡ works on processes.

Definition 5.1.1 (Weakening Relation — Choice) Relation � is the small-
est preorder defined by the following rules, where ∼= is its symmetric subset.
When Ξ1

∼= Ξ2, we say Ξ1 are ∼=-equivalent or just equivalent.

1. On multiplicities, for all p and m, p0 � pm � p? ∼= >.

2. On multiplicity sets:

• Ξ1 ∧ Ξ2 � Ξ1 � Ξ1 ∨ Ξ2, and ⊥�Ξ�>.

• Ξ∧(Ξ1∨Ξ2) ∼= (Ξ∧Ξ1)∨(Ξ∧Ξ2) and Ξ∨(Ξ1∧Ξ2) ∼= (Ξ∨Ξ1)∧(Ξ∨Ξ2)

• ∧ and ∨ are commutative, associative and idempotent, up to ∼=.

• If Ξ1 � Ξ2 then Ξ ∧ Ξ1 � Ξ ∧ Ξ2 and Ξ ∨ Ξ1 � Ξ ∨ Ξ2.

• The ∼= relation is a congruence, and � is covariant with respect to ∨
and ∧.

From the above rules one derives some useful properties:

Lemma 5.1.2 (Properties of ∼=)

• Up to ∼=, ⊥ is neutral for ∨ and absorbent for ∧. > is absorbent for ∨
and neutral for ∧.

• Let C[·] and C ′[·] be two behavioural contexts and ε a behavioural state-
ment. Then

C[C ′[C[ε]]] ∼= C[C ′[ε]]

• Let ∆ = ∆1 ∧ ∆2, and ∆′ � ∆. Then ∆′ ∼= ∆′1 ∧ ∆′2 with ∆′i � ∆i for
both i. The same property holds for ∨ instead of ∧ or � instead of �.

The following Lemma formally states that process types may be considered
up to ∼= (see also Lemma 4.4.2):

Lemma 5.1.3 (Types may be seen up to ∼=) Let Ξ1, Ξ2 be behavioural state-
ments such that Ξ1

∼= Ξ2.
Let Φ[·] be some expression involving behavioural statements, using only the

�, ⊗, \, o operators and with one “hole” [·]. Then Φ[Ξ1] ∼= Φ[Ξ2].
Now let Φ[·] be some statement involving behavioural statements and the

above operators, as well as any of the relations ∼= and �. Then Φ[Ξ1] is true iff
Φ[Ξ2] is.
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The proofs are given in Section A.1.1.
Many operators commute with the logical connectives, so, to keep their

technical definitions short we introduce:

Definition 5.1.4 (Logical Homomorphisms) A logical homomorphism is a
function f on behavioural statements or process types is such that f(X ∨ Y ) =
f(X)∨f(Y ) and f(X ∧Y ) = f(X)∧f(Y ), where, having Γi = (Σi; ΞLi J ΞEi),

Γ1 ∨ Γ2
def
= (Σ1 ∧ Σ2; ΞL1 ∨ ΞL2 J ΞE1 ∧ ΞE2)

Γ1 ∧ Γ2
def
= (Σ1 ∧ Σ2; ΞL1 ∧ ΞL2 J ΞE1 ∨ ΞE2) .

The ∧ operator on mappings Σi from names to channel types is equal to their
union, provided that the channel types coincide on names they share.

A logical homomorphism is fully specified by its action on behavioural state-
ments not using ∧ or ∨, as the general behaviour can be derived from the above.

Whether two types are related by weakening, ∼=-equivalent or neither is
decidable using a normal form for dependency statements. We defer the defini-
tion of this notion and the proof that every type has an equivalent normal form
(Lemma 6.3.3) until introducing behavioural statements including dependencies.

We now modify the transition operator to work with disjunction. p-reduction

Γ o p is a logical homomorphism such that p0 o p def
= ⊥ and otherwise follows

definition 4.3.12. As p0 o p produces the neutral element ⊥ of selection (ε ∨
⊥ ∼= ε) rather than failing, impossible elements in a selection are pruned when
information about the process state gets revealed by transition labels. For
instance assume the type Γ of a process P has (a ∧ b) ∨ (a0 ∧ c ∧ d) in the local

side. Then, if the process follows the transition P
a−−→, one can safely conclude

that the second term of the disjunction is no longer a correct description of the
process. And indeed,(
(a∧b)∨(a0∧c∧d)

)
oa = (a∧b)oa∨(a0∧c∧d)oa = (a0∧b)∨(⊥∧c∧d) = b∨⊥ = b

This “selection-pruning” becomes very interesting in presence of sums in pro-
cesses because it precisely mirrors Q’s disappearance in the (Sum) rule of the
labelled transition system (Table 2).

Definition 4.3.9 applies only to behavioural statements without disjunctions,
we show in the following definition how to slice arbitrary statements.

Definition 5.1.5 (Channel Type Slicing — Choice) Slicing a channel type
behavioural statement not using selection, written ξ|i where i is a parameter
number, is a process type inductively defined as follows:

pm|i =

{
pm if n(p) = i
> otherwise

⊥|i = ⊥, >|i = > and (ξ1 ∧ ξ2)|i = ξ1|i ∧ ξ2|i.
On channel types not using selection, 〈σ̃; ξI ; ξO〉 |i

def
= (i : σi; ξI |i J ξO|i).

Defining ∧ and ∨ for channel types as in Definition 5.1.4,

(σ1 ∨ σ2)|i
def
= σ1|i ∨ σ2|i and (σ1 ∧ σ2)|i

def
= σ1|i ∧ σ2|i gives the general

case.

Subtraction of behavioural statements (Definition 4.3.5) is generalised as
follows:
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Definition 5.1.6 (Process Subtraction) The Subtraction Operator \ is given
by:

•
∧
i∈I pi

mi \
∧
i∈I pi

m′
i

def
=
∧
i∈I pi

mi−m′
i

• for a set of Ξi and Ξ′j not using disjunction:∨
i∈I

Ξi \
∨
j∈J

Ξ′j
def
=

∨
ρ:J→I

∧
j∈J

(Ξρ(j) \ Ξ′j)

• when no other rules apply, Ξ \ Ξ′ = Ξ.

In the second point, ρ ranges over all functions with domain J — they do
not need to be surjective or injective.

Existence of replication (Lemma 4.5.2 that permits defining the replication
operator Γω) still holds with processes including arbitrary behavioural state-
ments, so Definition 4.5.3 applies with no changes to such process types. We
omit the proof but it can be shown in two parts: If Γ doesn’t use disjunction then
n = 2 satisfies the requirements (although n = 1 may also work for some pro-
cesses) and Γ2 replaces all non-zero multiplicities by ?. Secondly, if Γ’s normal
form4 contains m ∨-separated terms then n = 2m satisfies the requirements, as
this gives a chance for a dependency chain traversing all m terms to be reduced
(and the factor 2 sets multiplicities to ? as before). This is shown by induction
on m.

5.2 Semantics

Generalising of semantics (Definition 4.4.1) to deal with process types with
choice has been taken care of by generalising the type algebra, specifically the o
operator.

5.3 Type System

The only change to the type system in this iteration is a new (Sum) rule, where
separate branches of a sum are reflected as separate terms of a disjunction,
so for instance a+ b is typed with a type having (a1 ∧ b0) ∨ (a0 ∧ b1) as local
component.

∀i : (Σi; ΞLi J ΞEi) `# Gi.Pi

(
∧
i Σi;

∨
i ΞLi J

∧
i ΞEi) `#

∑
iGi.Pi

(C-Sum)

Other rules are as in Table 4 on page 22.
The exact properties given on page 22 hold for this type system as well,

except that Subject Congruence only holds up to ∼=:

Proposition 5.3.1 (Subject Congruence) Let Γ `# P and P ≡ P ′. Then
Γ′ `# P ′ for some Γ ∼= Γ′.

4General definition in Lemma 6.3.3.
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6 Activeness and Responsiveness

6.1 Introduction

A common requirement one may wish to express about a component written in
π-calculus is that a process should be listening (respectively, ready to send) at
an input (resp., output) port. Let us call this property activeness at a port.5

We first review our needs before proceeding to a formal definition.
For example, assuming the process language contains pair constructs and a

deconstructor, consider a process P decoding a value v and sending a signal on
a channel s, and a process Q first sending a signal and then decoding v.

P = a(v).case v of (x, y) : s̄

Q = a(v).s̄.case v of (x, y) : 0

These processes could be encoded in our language as follows, where u holds an
encoding of v.

[[P ]] = a(u).u(νr1r2).r1(x).r2(y).s̄

[[Q ]] = a(u).s̄.u(νr1r2).r1(x).r2(y).0

It is simple to show that P ∼ Q; however, [[P ]] 6≈ [[Q ]], since these processes
are distinguished by

R = a(νu).⊥.!u(xy).(x〈b〉|y〈c〉) (14)

where
⊥.P def

= (νt) t.P (15)

with t 6∈ fn(P ). Note that R does not violate any multiplicity constraint, as the
receiver on u is present — it is merely deadlocked (inactive).

Before we propose a solution, it should be noted that requiring u to be active
is not enough for P and Q to be indistinguishable, as is shown by

R = a(νu).!u(xy).⊥.(x〈b〉|y〈c〉) (16)

where u is active (after the transition a(νu)), but, after u receives a request r1r2,
the reply itself is not. This is solved by specifying in u’s channel type that its
parameter must itself be active and requiring u to be responsive in addition to
active, i.e. provide the resources declared in the channel type with no additional
dependencies.

Moreover, in order to have a property which is meaningful for nonlinear
names we add a reliability requirement to activeness. Consider the process
P = p(x).x̄, where p is plain (i.e. has multiplicities p? ∧ p̄?). At first sight it
might seem natural to declare that p is active in P . However that input is not
reliable because, composing P with a process p〈b〉.s̄ will not necessarily trigger
the success signal s̄, if a third party like E = p〈c〉.0 “steals” the input at p.
In contrast, the replicated form !P = ! p(x).x̄ is reliable, because there is an
infinite supply of inputs at p and no third party can steal them all (assuming
fairness on the scheduler).

5Input activeness is commonly called receptiveness.
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Finally, our target being encodings, there will be typically an overhead (in
terms of extra τ -transitions) in an encoded process compared to the original
one. Therefore it is acceptable if a number of τ -transitions are required before
a receiver (or sender, for output-activeness) becomes available. Ruling out such
“weak activeness” would give strong activeness and is characterised by works
such as [San99, ABL03]. This gives us an informal definition for activeness and
responsiveness:

Definition 6.1.1 (Semantics — Informal) A port p is said active in a pro-
cess P if

1. P will eventually (i.e. possibly after a finite number of τ -reductions) con-
tain an unguarded occurrence of p in subject position.

2. The port is “reliable”: no third party can prevent p from being made avail-
able to a process attempting to communicate with that port.

A process P is said input responsive on a channel a with type σ given ε if
any input on a yields a process providing all resources in σ’s input component,
depending at most on ε and resources in σ’s output component. The process
is said output responsive if the above holds when “input” and “output” are
swapped.

6.2 Dependency Statements

In this section we extend behavioural statements (Definition 5.0.1 on page 23)
with behavioural properties denoted A and R (ranged over by k), resources pk
(ranged over by α, β, γ) and dependency statements “γ/ ε”. We first motivate
the new notions and then present the new grammar.

A resource pA means that the port must be used at least once. Note that
multiplicities and activeness are complementary, in that the former put an upper
bound to the number of uses of a channel, and the latter puts a lower bound
on that number.

Assuming σp is the type for b and c in the example at the beginning of this
section, the reply channels r1 and r2 will have a type such as

σr = 〈σp; 1? ∧ 1̄?; 1? ∧ 1̄?〉

The ? exponents and absence of A-resources mean that both the input and
output ports of reply channels are free to interact with the parameters b and c
in any way. A type for u can then be written σu = 〈σr, σr; 1̄A ∧ 2̄A; 1A ∧ 2A〉,
telling that u’s input port must provide one active output on both parameters,
and u’s output port must provide one active input on both parameters. Finally,
the channel a will have a type such as 〈σu; 1̄?; 1ωA ∧ 1̄?〉, where both input and
output ports of a may send requests on the parameter u but a’s output port
must provide one replicated (“ω”) and active (“A”) input at the parameter.

Note that it makes little sense to specify activeness on the environment
component of a process type, so we will usually have activeness marks on the
local component only.

Resources can be conditional on other resources, which is expressed with
dependency statements. Intuitively, Ξ/ Ξ′ holds in a process P if whenever Ξ′

holds in E, Ξ holds in P |E.
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What is the difference between “Ξ1 J Ξ2” and “Ξ1/ Ξ2”? The former says
two things: the process behaves like Ξ1, and the environment is required to
satisfy Ξ2. The second statement says that if the environment satisfies Ξ2 then
the process will satisfy Ξ1. For instance assume some process P satisfies one of
those two statements (Ξ1 J Ξ2 or Ξ1/ Ξ2). Then composing P with a process
Q gives a process P |Q satisfying Ξ1 if Q satisfies Ξ2. If Q does not satisfy
Ξ2 then composing P and Q gives a process about which nothing can be said,
when the white triangle is used, and fails when the black triangle is used or
more specifically the composition of their types with � is undefined.

Definition 5.0.1 on Page 23 is thus generalised to include dependency state-
ments:

Definition 6.2.1 (Behavioural statement)

ξ,Ξ ::= pm
∣∣ (Ξ ∨ Ξ)

∣∣ (Ξ ∧ Ξ)
∣∣ ⊥ ∣∣ > ∣∣ γ/ ε (17)

ε ::= γ
∣∣ (ε ∨ ε)

∣∣ (ε ∧ ε)
∣∣ ⊥ ∣∣ > (18)

α, β, γ ::= sA
∣∣ pR (19)

We extend Convention 4.2.1 with items specific to dependency statements:

Convention 6.2.2 (Notation for Behavioural Statements)

1. Priority of operations: / binds tighter than ∨ and ∧, so the expression
α ∧ β/ γ ∧ δ must be read as α ∧ (β/ γ) ∧ δ. We will always use brackets
in case of ambiguity with respect to ∨ or ∧.

2. The dependency connective / is right-distributive:

• (Ξ1 ∨ Ξ2)/ Ξ
def
= (Ξ1/ Ξ) ∨ (Ξ2/ Ξ),

• (Ξ1 ∧ Ξ2)/ Ξ
def
= (Ξ1/ Ξ) ∧ (Ξ2/ Ξ),

• >/ Ξ
def
= >.

• Multiplicities pm may not have dependencies, so pm/ ε
def
= pm.

3. pAR abbreviates (pA ∧ pR), and pmA/ ε means (pm ∧ pA/ ε).

4. A dependency “/>” can be omitted.

5. In channel types, and in the local component of process types, any port
whose responsiveness dependencies are not specified are understood to be
responsive without dependencies.

6. In addition, the local component ΞL of a process type with channel type
mapping Σ should be understood as follows:

ΞL ∧
∧

x∈N\dom(Σ)

(
x0 ∧ x̄0 ∧ xR ∧ x̄R

)
Like for p?, the goal of statements such as pR/⊥ (literally, “if falsity holds,

then p is responsive”), logically equivalent to >, is just to prevent point 5 in the
above convention from applying.
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Examples. We present below some process type examples.

1. The type
(
a : λ, b : λ; aA ∧ b J ā ∧ b̄

)
is a valid description of process a | b,

a.b, and a | ⊥.b, but not of ⊥.a | b. It does however correctly describe

τ.a
def
= (νt) (t̄|t.a.0)

as the fact that a is not immediately available is not an issue if it is
guaranteed to eventually become so.

2. The type
(
a : λ; a?A J a0 ∧ ā?

)
is a valid description of process ! a.0, but

not of a.0, because the latter is unreliable. The type
(
a : λ; a?A J a0 ∧ ā1

)
,

on the other hand, is a valid description of both processes: as the environ-
ment may only do one output on a, there is no risk of competition even if
the input is not replicated.

3. Finally, using the notation

?.P
def
= (νt) (t̄ | t | t.P ) (20)

(assuming t fresh) as a shortcut for an “unreliable prefix”, the type(
a : 〈λ; 1̄A; 1A〉; aA J a0 ∧ ā

)
is a valid description of process a(x).x̄, but

neither describes ?.a(x).x̄ (a is not active) nor a(x).?.x̄ (x is not active).

Weakening the process type to
(
a : 〈λ; 1̄A; 1A〉; a J a0 ∧ ā

)
allows describ-

ing the first two processes, but still not the last: it is no longer required
for a to be active, but if a request is received then it must be replied to,
because the parameter is declared active in the channel type.

4. The input port of a Boolean channel (such as r, a, and b in process (1),
Page 2) has type

1̄1
A ∨ 2̄1

A, (21)

that says that either the first parameter (“1”) must be output (“1̄”) active
(“A”), and the second parameter unused,6 or (“∨”) the opposite.

The Boolean protocol requires outputs to provide a branching on the pa-
rameters, so for instance

b(νtf).(t.P+f.Q) (22)

is a responsive client (correctly implementing “if b then P else Q”). An
alternative implementation using internal choice may lead to deadlocks.
Let the internal choice operator ⊕ be

P ⊕Q def
= (νu)

(
ū | (u.P+u.Q)

)
(23)

for some u 6∈ (fn(P ) ∪ fn(Q)). Process

b(νtf).(t.P ⊕ f.Q) (24)

may evolve to the “wrong” branch, eg. to t.P whereas the environment
respond on f .

6Remember Convention 4.2.1 on page 15: ports that aren’t mentioned have multiplicity
zero.
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We want (22) to be recognised as correct and (24) to be ruled out but of
course both obey the client protocol 11

A∨21
A. We need a way to have behavioural

statements express the property “1 and 2 must be guards of a sum”.
To this end we extend the grammar of resources. In Definition 6.2.1, the

third rule (19) is substituted by the following one.

α, γ ::= pR
∣∣ sA (25)

s ::= p
∣∣ (p+ s) (26)

Just like pA, activeness of a port p, requires a p-guarded process to eventu-
ally come to top-level, activeness of a branching (

∑
i pi)A requires a sum to

eventually come to top-level, with one pi-guarded branch for each i.
We can now write the output Boolean protocol:(

11 ∨ 21
)
∧ (1 + 2)A, (27)

which is similar to (21) but on the input port of the parameters, and with the
additional constraint (“∧”) that inputs at the parameters (“1” and “2”) must
be the guards of a sum (“+”). This protocol is respected by (22) and broken
by (24).

The Boolean type gathers (21) and (27) as

Bool
def
=
〈
λ, λ ; 1̄1

A ∨ 2̄1
A ; (11 ∨ 21) ∧ (1 + 2)A

〉
(28)

Consider the following process:

t.a(x).u.x̄

As far as activeness is concerned, we have tA/ >, aA/ t̄A, uA/ (t̄A ∧ āA),
and, after a has been consumed and x made visible, x̄A/ ūA.

By definition, aR/ x̄A (a is responsive if x̄ is active), which gives us aR/ ūA.
Why doesn’t a’s responsiveness depend on t̄A? The idea is that responsiveness’s
dependencies are those that are required to provide a reply after a request has
been received. In this case, t̄A is no longer needed once a has received a request,
but ūA is required to answer it. Inversely, t̄A is required for a communication
on a to take place, but ūA is not needed for that.

The following process (where a is plain active) is another illustration of the
duality between activeness and responsiveness:

t1.a(x).u1.x̄ | t2.a(x).u2.x̄

Now we have aA/ (t̄1A ∨ t̄2A) and aR/ (ū1A ∧ ū2A): any of the t̄iA must
be provided for a to be active, but both ūiA must be provided for a to be
responsive. The reason is that the sender can’t know for certain which input on
a will receive the request, and therefore must provide both ūi to be certain the
request gets replied.

The following process shows why keeping activeness and responsiveness sep-
arate when computing dependencies is interesting:

a〈t〉.! b(x).x̄ | ! a(y).b〈y〉 (29)
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We have both bA / aA (because of the left-hand component) and aR / bR
(because of the right-hand component), and yet the process isn’t deadlocked.
However, not distinguishing aA and aR would result in the circularity “a/ b/ a”
and have the process rejected.

We can now add activeness annotation to (12) as a type for the process
(1). The local behavioural statement states that r is active with multiplicity ω
(i.e. has precisely one occurrence and it is replicated), and its responsiveness de-
pends on both a and b being active and responsive. The environment component
specifies that a and b must both have at most one replicated instance.

ΓA =
(
a : Bool, b : Bool, r : Bool;(

rω ∧ (rA/>)
)
∧
(
rR/ (aA ∧ aR ∧ bA ∧ bR)

)
J aω ∧ bω ∧ r0

)
(30)

By convention 4.2.1, the previous type can be rewritten:(
a : Bool, b : Bool, r : Bool; rωA ∧ rR/ (aAR ∧ bAR) J aω ∧ bω ∧ r0

)
We introduce some syntactic restrictions on what channel types are accept-

able:

Definition 6.2.3 (Channel Type Restrictions) A channel type 〈σ̃; ξI ; ξO〉
is said to have shared activeness (between its input and its output) if there is
an activeness resources pA such that both pmA/ ε ∈ ξI and pm

′

A / ε′ ∈ ξO for some
m, m′, ε and ε′.

The type is said to have blocked activeness if there is a port p such that
either pmA/ ε ∈ ξI and p̄0 ∈ ξO, or pA/ ε ∈ ξO and p̄0 ∈ ξI .

We also say it is a case of blocked activeness if there is a term p0
A in either

ξI or ξO.
A channel type has unstable multiplicities if (at least) one of ξI and ξO

include p1 ∧ p̄m, for some p and non-zero m.

Channel types with shared activeness need special care in a type system.
Consider for example the channel type

σ = 〈λ, λ; 1̄?A ∧ 1? ∧ 2A/ 1̄A; 1̄?A ∧ 1? ∧ 2̄A/ 1̄A〉

It has shared activeness on 1̄A, and a valid input with a : σ is a(xy).(! x̄ |x.y).
The process

a(xy).x.y (31)

on its own does not respect the protocol because it does not provide activeness
on x̄. Similarly, a valid output for the same type is a〈bc〉.(! b̄ | b.c̄). Note that
both the input and the output on a are required by the protocol to provide
output activeness on the first parameter, which is exactly “shared activeness”.

The reason it needs special care in a type system is that a naive treatment
would result in (31) being accepted: indeed, the protocol requires the output to
provide an x-output without conditions, and the input in (31) can be considered
to have delegated its work on x to the a-output. Yet of course a similar reasoning
would allow the output to delegate its work to the a-input, resulting in neither
of them doing it. We will see cases where such delegation is acceptable.

Types with blocked activeness simultaneously require one side of the channel
to provide activeness on a port, and forbid the other side to connect to that port.
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The reason for ruling out such types is that analysing processes such as a〈a〉
with a : σ = 〈σ;>; 1̄?A ∧ 1?〉 becomes more difficult — On the one hand the
request itself seems to fulfil the protocol, as it is an output on a, and on the
other hand, as soon as the request is sent the output is no longer available
but, simultaneously, the a-input is not be permitted to attempt accessing its
parameter. Ruling out blocked activeness avoids such paradoxical cases.

Finally, a valid receiver (or sender) on a channel type with unstable mul-
tiplicities may become invalid through a τ -transition, by consuming its own
parameters. For instance, having a : σ = 〈λ; . . .; 1 ∧ 1̄〉, P = (νb) (a〈b〉 | b | b̄) is
a correct output. But of course P −→ (νb) (a〈b〉), which isn’t.

Because of that, and because we believe there is little (if any) use to such
channel types, we apply, in the rest of this paper, the following:

Convention 6.2.4 No channel types involved in a semantic judgement or in a
typing judgement may have shared or blocked activeness, or unstable multiplic-
ities (this also applies to parameter types at all depths).

6.3 Algebra

We start by refining the notions of weakening of (process) types and of normal
forms.

Definition 6.3.1 (Weakening Relation)

1. On dependencies and behavioural statements (together ranged over by η):

• η1∧η2 � η1 � η1∨η2, and ⊥�η�> η∧(η1∨η2) ∼= (η∧η1)∨(η∧η2).

• ∧ and ∨ are commutative, associative and idempotent, up to ∼=
• If η1 � η2 then η ∧ η1 � η ∧ η2 and η ∨ η1 � η ∨ η2

• If η1
∼= η2 then γ/ η1

∼= γ/ η2, (η J η1) ∼= (η J η2) and (η1 J η) ∼=
(η2 J η)

2. On dependency statements:

• (γ/ ε1) ∧ (γ/ ε2) ∼= γ/ (ε1 ∨ ε2)

• (γ/ ε1) ∨ (γ/ ε2) ∼= γ/ (ε1 ∧ ε2)

• γ/⊥ ∼= >

Deciding if two types are equivalent or related by weakening can be done by
constructing their normal forms.

Lemma 6.3.2 (Normal Forms) Any behavioural statement or dependency ε
can be written in a normal form ε′ with the following properties:

1. ε′ ∼= ε.

2. ε′ =
∨
i∈I εi and εi =

∧
j∈Ij uij where uij are either resources (for the

normal form of a dependency) or dependency statements (for the normal
form of a behavioural statement) whose dependencies are themselves in
normal form.
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3. The sets I and Ij are minimal.

All ε also have “conjunctive normal forms” defined the same way but with the
disjunction and conjunction swapped in point 2.

Proof In the context of constructing a normal form, two statements match if
they can be merged in some way, when connected by ∨ or ∧. Specifically:
Every statement matches itself as for instance ε ∨ ε ∼= ε by idempotence, two
statements γ/ ε1 and γ/ ε2 match as f.i. (γ/ ε1) ∨ (γ/ ε2) ∼= γ/ (ε1 ∧ ε2).

Two conjunctions
∧
i∈I Ξi and

∧
i′∈I′ Ξi′ match if either every Ξi with i ∈ I

is ∼=-equivalent to some Ξi′ for some i′ ∈ I ′, or if there are ı̂ ∈ I and ı̂′ ∈ I ′
such that Ξı̂ matches Ξı̂′ , every Ξi with i 6= ı̂ is ∼=-equivalent to some Ξi′ , and
reciprocally every Ξi′ with i′ 6= ı̂′ is ∼=-equivalent to some Ξi.

In the former case,
∧
i∈I Ξi ∨

∧
i′∈I′ Ξi′ ∼=

∧
i′∈I′ Ξi′ (as a consequence of

(Ξ1
∼= Ξ2) ⇒

(
(Ξ1 ∨ Ξ2) ∼= Ξ1

)
). In the latter case,

∧
i∈I Ξi ∨

∧
i′∈I′ Ξi′ ∼=∧

i∈I\{ı̂} Ξi∧(Ξı̂∨Ξı̂′) (as a consequence of the (Ξ∧Ξ1)∨(Ξ∧Ξ2) ∼= Ξ∧(Ξ1∨Ξ2)

rule).
Note that matching is symmetric and reflexive but not transitive. For in-

stance α/εα∧β/εβ∧γ/εγ matches both α/εα∧β/ε̂β∧γ/εγ and α/εα∧β/εβ∧γ/ε̂γ
but the latter two don’t match each other.

The normal form of a behavioural statement is constructed so that in any
conjunction or disjunction appearing in it, no two terms match each other,
thereby being in some sense “minimal”. We show by structural induction that
any behavioural statement Ξ has such a normal form.

For Ξ = ⊥ and Ξ = > the normal forms are respectively
∨
i∈∅ εi and

∧
i∈∅ εi.

Let Ξ and Ξ′ be two behavioural statements with normal forms
∨
i∈I Ξi and∨

i′∈I′ Ξi′ . The normal form of Ξ ∨ Ξ′ is obtained from
∨
i∈I∪I′ Ξi by merging

pairs of matching Ξi as indicated above until it is no longer possible. Although
the Ξi were themselves irreducible, merging them may introduce matching sub-
terms, which can inductively be reduced.

Let Ξi, i′ be the normal form of Ξi ∧ Ξi′ . The normal form of Ξ ∧ Ξ′ is
then obtained from

∨
i∈I, i′∈I′(Ξi, i′) by merging pairs of matching Ξi, i′ until no

longer possible. Again, the merging may permit further simplification.
The above proof applies to conjunctive normal forms if > and ⊥ are swapped,

all disjunctions occurring in the proof are replaced by conjunctions and the other
way round. 2

The following two rules can be used to directly verify if two types are related
by weakening, given their normal forms:

Lemma 6.3.3 (Weakening Decidability) Let {εi}i∈I and {εj}j∈J be sets of
dependencies. Then:

1.
∨
i∈I εi �

∨
j∈J εj if for all i ∈ I, there is j ∈ J such that εi � εj.

2.
∧
i∈I εi �

∧
j∈J εj if for all j ∈ J , there is i ∈ I such that εi � εj.

See Section A.1.3 for the proof.
Behavioural statement composition Ξ � Ξ′ builds on two auxiliary opera-

tors: A dependency reduction operator that collapses dependency chains, and a
cleaning operator that drops unused portions of process types.
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The reduction relation, like weakening, highlights the logical aspect of be-
havioural statements and is analogous to the modus ponens rule in logic. Par-
allel composition may create dependency chains which must then be reduced.
For example a.b̄ and b.c̄ satisfy respectively b̄A / āA and c̄A / b̄A, while their
composition a.b̄ | b.c̄, in addition to b̄A/ āA, satisfies c̄A/ (āA ∨ b̄A).

More generally:

Definition 6.3.4 (Dependency Reduction) The reduction relation ↪→ on
behavioural statements is a partial order relation satisfying the following rules
where channel type mappings Σ have been omitted for clarity.

1. (sA/ ε) ∧ (γ/ ε′) ↪→ (sA/ ε) ∧ (γ/ ε′{ε{⊥/γ}∨sA/sA})

2. (pR/ ε) ∧ (γ/ ε′) ↪→ (pR/ ε) ∧ (γ/ ε′{ε{⊥/γ}∧pR/pR})

3. for m 6= 0, p 6= q and ε 6∼= ⊥ 6∼= ε′: (p+ q + s)A/ ε ∧ pA/ ε
′ ∧ q̄m ↪→ ⊥

On process types:

4. Ξ ↪→ Ξ′ implies (Ξ J ΞE) ↪→ (Ξ′ J ΞE) and (ΞL J Ξ) ↪→ (ΞL J Ξ′).

5. (pR/ ε1 J pR/ ε2) ↪→ (pR/ (ε1 ∧ ε2) J pR/ ε2)

6. If (α/ ε) � ΞE with β � ε then (γ/ ε′ J ΞE) ↪→(
γ/ (ε′{α∧β/α}) J ΞE

)
for β 6= γ.

7. If (ΞL J ΞE) ↪→ (Ξ′L J Ξ′E) then (C[ΞL] J ΞE) ↪→ (C[Ξ′L] J Ξ′E) and
(ΞL J C[ΞE]) ↪→ (Ξ′L J C[Ξ′E]) for any local context C[·].7

A behavioural statement Ξ is closed if Ξ ↪→ Ξ′ implies Ξ ∼= Ξ′. A closure of
a behavioural statement Ξ, written close (Ξ), is Ξ′ such that Ξ ↪→ Ξ′ and Ξ′ is
closed.

Point 3 simulates a selection and a branching occurring inside a process, by
replacing every term of the branching that does not match the selection by ⊥,
which is the neutral element of ∨. For example the transition

t̄ | (t.P+f.Q)
τ−−→ P

is matched by

(t+ f)A ∧
(
(tA ∧ ΓP ) ∨ (fA ∧ ΓQ)

)
∧ t̄1 ∼=

(
(t+ f)A ∧ tA ∧ ΓP ∧ t̄1

)
∨(

(t+ f)A ∧ fA ∧ ΓQ ∧ t̄1
)

↪→
(
(t+ f)A ∧ tA ∧ ΓP ∧ t̄1

)
∨ ⊥

∼=
(
(t+ f)A ∧ tA ∧ ΓP ∧ t̄1

)
We require activeness of the branching to prevent the rule from applying in case
there is a risk of race conditions.

Point 4 and 7 permit applying reduction on any part of a process type.
Points 5 and 6 permit reduction between the local and environment side of

a process type, and is used by the output transition operator Γ o a〈x̃〉 to remove

7I.e. C ::= [·]
∣∣ C ∧ Ξ

∣∣ C ∨ Ξ
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expected remote behaviour from the type. For instance a〈x〉.x.s̄, where a is
alternating, may have reduced s̄A/ x̄A and x̄A/ aR into s̄A/ aR. Simulating the
a〈x〉 transition effectively cancels the x̄A/ aR term and the reduction it caused,
as the environment component of σ[x] / (āR J aR) contains xA / aR which,
through rule 6, replaces aR-dependencies by x̄A dependencies. Similarly, the
x̄A/ aR statement becomes x̄A/ x̄A, i.e. x̄A/⊥.

The following Lemma justifies the use of “close” as a function:

Lemma 6.3.5 (Closure Uniqueness) Every behavioural statement has, up
to ∼= (Definition 6.3.1), exactly one closure.

The proof is given in Section A.1.4 on page 66 and includes an algorithm for
computing the closure.

The different treatment of activeness and responsiveness (in γ’s dependen-
cies, the former gets a ∨ and the latter a ∧), can be understood as follows:
If two processes P1 and P2 both provide an a-input, it is enough that one of
them is able to receive a request to have a active in P1|P2. On the other hand,
they must both be responsive in order to guarantee that all a-requests will get
a response. Also note how self-dependencies γ / γ are replaced by γ / ⊥. Ac-
tiveness self-dependencies are found in deadlocks such as ā.! b | b̄.! a where aA
and bA depend on each other, and responsiveness self-dependencies are found in
livelocks such as ! a(x).b〈x〉 | ! b(x).a〈x〉 where aR and bR depend on each other.

The second auxiliary operator for process type composition is the following,
that drops parts of process types that are no longer used after a composition:

Definition 6.3.6 (Removal of Non-Observable Dependencies) Let Γ be
a process type. Removing non-observable dependencies in it is done by the clean
operator, applying the following operations on its local behavioural statement ΞL

as many times as possible. In the following, s ranges over
(∑

i∈I pi
)

where i 6= j
both in I implies pi 6= pj. Whenever k = R, I contains a single index.

• Replace any statement sk/ε where at most one pi is observable (Definition
4.3.13) in Γ by >

• In any statement γ/ ε, replace any sA in ε by ⊥ whenever at least one pi
is not observable in Γ’s complement Γ, and any sR by >.

Removal of non-observable dependencies needs to check observability of all
ports in a branching. Note that the check for pi 6= pj , as well as the condition on
“at most one” pi being observable are only required because we’re overloading
the A property for both sum activeness and port activeness. Also note that in
Γ =

(
Σ; t ∨ f J t̄ ∨ f̄

)
, a resource (t+ f)A would be preserved, as both t and f

are observable as Γ o t and Γ o f are both well defined and equal to (Σ;> J >)
— they just aren’t observable simultaneously.

The p-reduction operator (page 18) is extended as follows to deal with de-
pendency statements.

Definition 6.3.7 (p-Reduction) The p-reduction operator on processes con-
taining dependency statements is the logical homomorphism defined by the fol-
lowing rule in addition to those given in Definition 4.3.12:

(
∑
i pi)A o p

def
= > if both p = pi and p 6= pi′ for some i 6= i′.
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We first generalise composition of behavioural statements, before lifting it
to full process types.

Definition 6.3.8 (Behavioural Statement Composition)
The behavioural statement composition operator � is the logical homomor-

phism such that:

1. (pm)� (pm
′
)

def
= pm+m′

2. (sA/ ε)� (sA/ ε
′)

def
= (sA/ ε) ∧ (sA/ ε

′)

3. (pR/ ε)� (pR/ ε
′)

def
= (pR/ ε) ∨ (pR/ ε

′)

4. Ξ�⊥ def
= ⊥

5. When no other rule applies, Ξ� Ξ′
def
= >.

Note again the difference in behaviour between activeness and responsive-
ness, very similar to the one occurring in behavioural statement reduction. In-
deed it is a simple exercise to verify that dependency reduction commutes with
composition or, more accurately:

Lemma 6.3.9 For any two behavioural statements Ξ and Ξ′:

close (close (Ξ)� Ξ′) ∼= close (Ξ� Ξ′)

Point 5 above and Convention 6.2.2 interact in a subtle way to give the
following property:

Lemma 6.3.10 (Composition of disjoint statements) For two statements
Ξ and Ξ′, having no resources in common when written according to Convention
6.2.2 (specifically, its point 5), Ξ� Ξ′ = Ξ ∧ Ξ′

The proof is given in Section A.1.5 on page 68.

Definition 6.3.11 (Process Type Composition) Process Type composition
Γi = (Σi; ΞLi J ΞEi) with i = 1, 2, written Γ1 � Γ2

clean

(
close

(
Σ1 ∧ Σ2 ; ΞL1 � ΞL2 J

ΞE1

ΞL2
∧ ΞE2

ΞL1

))
When performing channel type instantiation, slicing of channel types includ-

ing dependency statements follows Definition 4.3.9 with the following additional

rule: γ/ ε|i =

{
γ/ ε if n(γ) = i
> otherwise

Note that the ith term may now include, in

the dependencies, resources of parameters other than i.

Definition 6.3.12 (Transition Operator) Γ = (Σ; ΞL J ΞE) being a process
type with Σ(a) = σ, the effect of a transition µ on Γ is Γ o µ, defined as follows.

• Γ o τ def
= Γ,

• Γ o a(x̃)
def
= Γ o a� σ[x̃]/ (aR J āR),
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• Γ o (νz̃ : σ̃) a〈x̃〉 def
= Γ o ā ⊗ σ̄[x̃]/ (āR J aR).

In the above definition, Γ/ (āR J aR) makes Γ’s local component depend
on āR and its environment component depend on aR. We illustrate the above
operator on the process A (Equation 1):

We illustrate the transition operator on the process A (Equation 1):

The transition A
r(uv)
−−−−−→ A′ = A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄) is matched on ΓA

(30) by(
Σ; rωA ∧ rR/ (aAR ∧ bAR) J aω ∧ bω ∧ r0

)
o r(uv) =

ΓA o r � (u : λ, v : λ; (ūA ∨ v̄A)/ rR J (u+ v)A/ r̄R ∧ (u ∨ v))

The “or” part has no effect, as discussed when illustrating Definition 4.3.12.
Computing the composition works as follows, where the numbers match those
in Definition 6.3.11.

1. The channel type mapping of the resulting process type is just

a : Bool, b : Bool, r : Bool, u : λ, v : λ

The local component is

rωA ∧ rR/ (aAR ∧ bAR)� (ūA ∨ v̄A)/ rR =

rωA ∧ rR/ (aAR ∧ bAR) ∧ (ūA ∨ v̄A)/ rR

and the environment component is just the conjunction.(
aω ∧ bω ∧ r0

)
∧
(
(u+ v)A/ r̄R ∧ (u ∨ v)

)
2. Closure of the resulting expression reduces the dependency chain

(ūA ∨ v̄A)/ rR ∧ rR/ (aAR ∧ bAR)

producing the statement

(ūA ∨ v̄A)/ (rR ∧ aAR ∧ bAR)

3. Finally, because of r0 in the environment component, the dependency on
rR can be replaced by > in the above statement, resulting in

(ūA ∨ v̄A)/ (aAR ∧ bAR)

Omitting the parts about r’s activeness and responsiveness that were left
unchanged, we end up with(

a : Bool, b : Bool, r : Bool, u : λ, v : λ;

(ūA ∨ v̄A)/ (aAR ∧ bAR) J

aω ∧ bω ∧ r0 ∧ (u ∨ v)
)

(32)

as a type for A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄), where the local behavioural statement
is read as “if active and responsive a and b inputs are provided, then an output
will be sent on (exactly) one of u and v,” which is indeed a correct statement
for that process A′. Remember that this type was not obtained by analysing

A′, but is a prediction of the effect of a transition
r(uv)
−−−−−→ on a process of type

ΓA.
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6.4 Semantics

We now outline semantic definitions for the liveness properties “A” and “R”,
using the notation Γ |= P , read “The process type Γ is a correct description of
process P”.

We first define immediate correctness of a statement, that tells whether it
holds for the process in its current state.

Definition 6.4.1 (Immediate Correctness) A dependency statement γ/ε is
immediately correct in a typed process (Γ;P ) if it satisfies one of the following
rules.

1. A dependency statement γ/⊥ is always immediately correct.

2. An activeness statement (
∑
i∈I pi)A/ ε is immediately correct if

P ≡ (νz̃)
(
(
∑
j∈J Gj .Cj) | Q

)
with I ⊆ J , and

∀i ∈ I (sub(Gi) = pi and n(pi) 6∈ z̃).

3. A responsiveness statement pR/ε is immediately correct if, for any transi-

tion (Γ;P )
(νz̃) a〈x̃〉
−−−−−−−−→ s.t. n(p) ∈ x̃\ z̃, it is the case that σ[x̃]|pR = pR/ ε0

with (aR ∧ ε0) � ε.

Why is it enough to only check responsiveness of output objects? Respon-
siveness is usually tested in two phases, one to “ask a question” and one for the
process to “reply to it” (for instance testing a’s responsiveness in the process

a(x).x̄ is done with the “question”
a(x)
−−−−→ followed by the “answer”

x̄−−→). For
such tests responsiveness is always “immediately correct” as we do not allow
more than one transition to test it. However when an output process delegates
responsiveness of an object port, a single transition can disprove a responsive-

ness statement. For instance if a process exhibits the
a〈b〉
−−−−→ transition, assuming

one parameter i/o-alternating channel types, we can immediately infer that bR
must depend at least on aR. This is what the point about responsiveness in the
above definition checks.

6.4.1 Type Projections

In addition to the reasons just presented, we also need a way to simulate selec-
tions done by the environment. Consider the statement

(t̄A ∨ f̄A)/ (t̄′A ∨ f̄ ′A). (33)

which applies to A|B where A is (1) and B is a process active and responsive at
b, after a request has been sent to r and a has been queried: if the environment
provides one of t̄′A or f̄ ′A, then the process will provide one of t̄A or f̄A. In
other words the remote side is permitted to select one of t′ and f ′, and for
any of them, the local side is permitted to select one of t and f . As the way
the process provides (t̄A ∨ f̄A) differs depending which of t̄′A or f̄ ′A is made
available, we use a projection relation that performs the selection, and may for
instance project (33) to (t̄A ∨ f̄A)/ f̄ ′A, which can then be shown true through

the
f ′

−−−→ f̄−−→ transition sequence.
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Any behavioural statement Ξ2 can be written as a conjunction of disjunctions
(Lemma 6.3.2, and then any of those disjunctions (Ξ0 in the definition below)
is called a projection of Ξ2. Formally:

Definition 6.4.2 (Elementary Statement and Projections)
An elementary statement is a behavioural statement of the form∨

i

(
γi/

∧
j

αij
)
.

Let Ξ2 be a behavioural statement. An elementary statement Ξ0 is a projec-
tion of Ξ2, written Ξ2 ↘ Ξ0, iff Ξ2 � Ξ0 and, for all elementary statements Ξ1

such that Ξ2 � Ξ1 � Ξ0, we have Ξ0
∼= Ξ1.

Remember (Definition 6.3.1, point 2 on page 33) that disjunctions on the
dependency side can be passed on the other side of the / connective, where
they become conjunctions, which can then be dropped through projection. For
example: γ/ (α1 ∨α2) ∼= (γ/α1)∧ (γ/α2)↘ (γ/αi) for any i ∈ {1, 2}. Because
of this, the ↘ relation precisely characterises the environment’s freedom in
resource negotiation. Assume a process has a local component described by

(γ1/ (α11 ∨ α12)) ∧ (γ2/ (α21 ∨ α22))

It has four projections, one of which is γ2/ α21, which corresponds to the envi-
ronment requesting γ2, and providing α21 in exchange.

6.4.2 Correctness Strategies

The informal definition of activeness (Definition 6.1.1) says that a process will
eventually be ready to communicate at a port. A difficulty in defining “even-
tually” is that it depends on the scheduler. We chose a definition that assumes
some fairness from the scheduler (to be able to state results in presence of diver-
gence) but not too much (so that for instance the results hold with a stochastic
scheduler).

A natural semantic definition of a conditional statement γ / ε for a typed
process (Γ1;P ) would be “for all correctly typed processes (Γ2;P2) such that ε
is included in Γ2 and Γ1 � Γ2 is well defined, (Γ1 � Γ2;P1 |P2) satisfies γ.”

That definition happens to be very difficult to work with, mainly because of
the universal quantification on P2. Just as it is common to use labelled bisim-
ulations instead of barbed equivalences we use a definition based on labelled
transitions.

Assuming an elementary statement
∨
i

(
γi/

∧
j αij

)
is satisfied by a process,

there must be a “path” in the transition network that uses no more external
resources than declared in the statement, and that “leads to” a set of processes
where one of the γi is immediately available. We call such a path a strategy.

Definition 6.4.3 (Strategy Function)

1. A strategy function f maps typed processes to pairs of transition labels
and typed processes such that

if f(Γ;P ) = (µ; Γ′;P ′) then (Γ;P )
µ−−→ (Γ′;P ′).
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2. A strategy relation
f−−→ on typed processes is defined by the following rules:

(a) f(Γ;P ) = (µ; Γ′;P ′) implies (Γ;P )
f−−→ (Γ′;P ′), and

(b) (Γ;P )
f−−→ (Γ;P ) if (Γ;P ) is not in f ’s domain.

In other words, whenever a typed process is missing from a strategy’s do-
main, it means that the strategy is to leave the process unchanged rather than
performing a transition. When constructing a strategy function we exclude
typed processes containing statements that are immediately correct from the
function’s domain.

6.4.3 Satisfaction

The actual semantic definition is stated similarly to the usual notion of fairness,
which says, for a scheduler, that if a particular transition is constantly available,
it will eventually occur . Instead of a particular transition we use a strategy
function. The definition is structured in three parts. The first numbered list de-
fines some symbols that build up a “test” of the strategy. The second numbered
list specifies what constitutes a valid test and the last numbered list provides
conditions for the test to be passed.

Definition 6.4.4 (Satisfaction) Let Γ be a type and P a process. We say that
P satisfies Γ (or Γ is correct for P ), written Γ |= P , if Γ |=# P and there is
a strategy f s.t. for any

1.1 “query” transition sequence µ̃q and (Γ0;P0) with (Γ;P )
µ̃q−−−→ (Γ0;P0),

1.2 sequence of typed processes {(Γi;Pi)}i∈N0
,

1.3 infinite “strategy application point” set I ⊆ N0,

1.4 finite indexing set J and

1.5 collection of resources {γj}j∈J and dependencies {εi,j}i∈N0,j∈J

such that

2.1 ∀i ∈ I: (Γi;Pi)↘ (Γ′i;Pi)
f−−→ (Γi+1;Pi+1) for some Γ′i, and

2.2 ∀i ∈ (N0 \ I) : (Γi;Pi)↘ (Γ′i;Pi)
µi−−−→ (Γi+1;Pi+1) for some Γ′i, µi.

2.3 For all i ∈ N0 let Ξ′Li be Γ′i’s local dependency network. Then Ξ′L0
∼=∨

j∈J γj/ εj,0 and ∀i > 0: Ξ′Li �
∨
j∈J γj/ εj,i,

we have j ∈ J such that:

3.1 For each i ∈ I such that (Γi;Pi)
f−−→ (Γi+1;Pi+1) is a transition with

subject pi, εj,i � piA

3.2 If γj is an activeness resource there is a number i ∈ I such that γj/ εj,i is
immediately correct for (Γi;Pi).

3.3 If γj is a responsiveness resource then for all i ∈ N0, γj/εj,i is immediately
correct for (Γi;Pi).
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Although the {Pi}i∈N0
sequence must be infinite, it may correspond to a

finite number of (strong) transitions if, after some point, all µi are empty and
the strategy does no transition.

While projections deal with disjunctions on the right of the / connective,
disjunctions on its left need to be handled specially. Note how the statement
(Ξ1 ∨Ξ2) |= P is strictly weaker (in a logical sense) than (Ξ1 |= P )∨ (Ξ2 |= P ),
for reasons analogous to the modal logic statement 2(Ξ1 ∨ Ξ2) being weaker
than (2Ξ1)∨ (2Ξ2): it could be that the selection has not yet been made in P ,
and will only occur after a few transitions. Because of that we can’t define the
semantics of a disjunction in terms of the semantics of the individual terms. On
the other hand (Ξ1 ∧ Ξ2) |= P is equivalent to (Ξ1 |= P ) ∧ (Ξ2 |= P ), just like
2(Ξ1 ∧ Ξ2) ⇐⇒ (2Ξ1) ∧ (2ε2) in most modal logics.

This is addressed by first picking a full transition sequence and then only by
requiring the outcome of the selection to be decided, which can be seen in the
definition in the expression “we have j such that. . . ”. Note how the transition
sequence interleaves single invocations of the strategy between arbitrarily long
transition sequences, resulting in what we believe to be a good characterisation
of fairness. The “eventually” aspect of activeness is covered by the “there is i
s.t.”.

The semantics of responsiveness is mostly provided by the transition operator
when computing Γ0 from Γ and µ̃q. For example, to verify a statement aR/ ε,
one can submit the process to a sequence of transitions ending in an input a(x̃),
after which the transition operator will introduce σ[x̃]/ ε into the type (σ being
a’s type), so that the behaviour specified in the channel type must then be
provided by the process in order for satisfaction to hold.

The following formalises the intuition behind weakening:

Lemma 6.4.5 (Bisimulations and Type Equivalence) Let (Γ;P ) be such
that Γ |= P . Then, for any Γ′ � Γ and any P ′ ∼ P , if Γ′ |=# P ′ then Γ′ |= P ′.

See Section A.2.2 for the proof. We need the check for correct multiplicities
because uniformity is not always preserved by bisimilarity. On the other hand
we have the following corollary derived from Lemma 4.4.2 which lets us drop
the condition on Γ′ |=# P ′, and also justifies our identifying types up to ∼= and
processes up to ≡. See also Proposition 7.3.1.

Corollary 6.4.6 Let Γ � Γ′ with Γ |= P , and P ≡ P ′. Then Γ′ |= P ′ as well.

6.4.4 Example

We now sketch a proof that ΓA given in (30), page 32, is a correct type for
P = A given in (1).

We prove a few values of (Γ′0;P0); others are similar. For the sake of read-
ability we omit channel type mappings and environment multiplicities. It is easy

to see that, the r-input being replicated and having multiplicity ω, A
µ̃q−−−→ P0

implies P0 ≡ A |R for some R, and similarly Γ0 = ΓA o µ̃q must be ∼=-equivalent
to ΓA ∧ ΓR for some ΓR disjoint from ΓA in the sense of Lemma 6.3.10 and so
any Γ0 ↘ Γ′0 (required by 2.1 and 2.2) satisfies either ΓA ↘ Γ′0 or ΓR ↘ Γ′0.
We focus on the former first.
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1. Let Γ0 ↘ Γ′0 = rA. No matter which sequence is selected, as Γ′0 contains
no disjunction, J has a single element ̂ and ∀i ∈ N0 : ε̂,i = >. Define

the strategy f to be idle in this sequence (i.e. ∀(rA;Pi) : (rA;Pi)
f−−→

(rA;Pi)).

Point 3.1 is vacuously true as f does no labelled transitions. We have
∀i : Γi = rA and Pi ≡ A |Ri for some Ri. The index i needed in point 3.2
of the Definition can be set to any value from I because rA is always
immediately correct in a process A |Ri.

2. Let instead Γ0 ↘ Γ′0 = rR / (aAR ∧ bAR). Here again J = {̂} and
γ̂ = rR. This case is again shown correct by having f be idle and rR/ ε̂,i
is also always immediately correct (Definition 6.4.1) by virtue of r never

appearing in object position in any Pi
µi−−−→ Pi+1 if Γ′i o µi is to be well-

defined.

We now study two representative transition sequences projecting on ΓR, and
discuss the strategy f as we go forward.

3. We start by sending a request µ̃q = r(uv) to the process. Its projection
Γ′0 is given by (32) on page 38 which is elementary (ūA ∨ v̄R contains no
“∧” and aAR ∧ bAR contains no “∨”). J contains two elements, let’s call
them 1 and 2, such that γ1 = ūA and γ2 = v̄A, so the strategy’s work is
to bring activeness on one of those two ports.

4. To bring the process closer to that goal we set the strategy to follow the

P0
a(νt′f ′)
−−−−−−−→ A | (t′.b〈uv〉+ f ′.v̄) output, which is permitted (point 3.1 of

the Definition) because its subject ā has its complement a active in both
the dependencies of ūA and v̄A (although is is not yet decided which one
will be available). The local behavioural statement is now

Γ1 = (ūA ∨ v̄A)/ (aAR ∧ (t̄′A ∨ f̄ ′A) ∧ bAR)

5. If we do not want to help the strategy find the way out we set 1 ∈ I as
well. As specified by point 2.1 we must still pick a projection Γ1 ↘ Γ′1
which is not trivial because now the dependency contains a disjunction.
In other word we must simulate the choice made by the a input. Let’s
pick f̄ ′:

Γ′1 = (ūA ∨ v̄A)/ (aAR ∧ f̄ ′A ∧ bAR)

6. The process is now
P1 = A | (t′.b〈uv〉+f ′.v̄)

so the strategy must consume the f ′ prefix, which is permitted because
its complement is active (f̄ ′A) in the dependencies, while a t′-transition
would violate the condition fixed in point 3.1 of the Definition.

7. We are now at the process P2 = A|v̄. If 2 ∈ I then i = 2 satisfies the
requirement 3.2 as v̄A is now immediately correct. If instead we consume
v̄ with µ2 = v̄, the transition operator removes activeness of both ū and
v̄ (see Definition 6.3.4 and the discussion that follows it). in other words,
it replaces the dependency on (aAR ∧ f̄ ′A ∧ bAR) by a dependency on ⊥
which, by the first point of Definition 6.4.1, is always immediately correct
for any i > 2.
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−
(∅;> J >) ` 0

(R-Nil)

∀i : Γi ` Pi
Γ1 � Γ2 ` P1 |P2

(R-Par)
Γ ` P Γ(x) = σ

(νx) Γ ` (νx : σ)P
(R-Res)

∀i :
(
sub(Gi) = {pi}, (Σi; ΞLi J ΞEi) ` Gi.Pi

)
ΞE �

∧
i ΞEi(

ΞE has concurrent environment pi′
)
⇒ ε = ⊥(∧

i Σi; (
∑
i pi)A / ε ∧

∨
i ΞLi J ΞE

)
`
∑
iGi.Pi

(R-Sum)

Γ ` P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = ?)⇒ ε = ⊥(

p : σ; J pm ∧ p̄m′
)
�(

; p
#(G)
A / ε J

)
�

(νbn(G))
(

Γ/ p̄A �
σ[x̃]/ p̄AR �

(; pR/ σ[x̃] J )
)#(G)

` G.P

(R-Pre)

Table 5: Type System Rules

Picking t̄′ instead of f̄ ′ at step 5 is essentially the same: the strategy then

follows the
t′−−→

b〈uv〉
−−−−−→ path and the transition operator drops ū ∨ v̄ at the

second transition.

6.5 Type System

A typed process (Γ;P ) is typable according to the Activeness and Responsive-
ness Type System (written Γ ` P ) if the judgement can be derived from the
Activeness and Responsiveness Type System.

Definition 6.5.1 (Activeness and Responsiveness Type System) The
rules in Table 5 inductively define the Activeness and Responsiveness Type Sys-
tem.

The next section presents an example and a detailed discussion of each rule.

6.6 A Typing Example

We illustrate the five factors of the (R-Pre) rule in order with the derivation
of

rR/ (aAR ∧ bAR) (34)

(r is responsive if both a and b are active and responsive) as a type for the
process (1) on page 2. All rules of the type system except (R-Par) are used
in this derivation so we will describe them in the order in which they are used.
For an explanation of (R-Par), refer to the discussion of Definition 6.3.11.

44



Strictly following the rules gives a behavioural statement containing every
possible statement that can be made about the process, so types can become
rather large even for simple processes. So in this example we omit parts of the
types that are not used to compute r’s responsiveness dependencies. Typing
is syntax directed, starting from invocations of (R-Nil) (that types the idle
process with the neutral element of �).

Subject type, multiplicities and activeness. The parameter-less output
f̄ is typed using the prefix rule (R-Pre). The name is linear (m = m′ = 1) and,
since there are no parameters or continuation, all but the first two factors of the
typing are empty, leaving us with:

(
f : λ; J f̄1 ∧ f1

)
�
(
; f̄1

A/> J
)
, that is:

Γ35 =
(
f : λ; f̄A J f̄0 ∧ f1

)
` f̄ (35)

Continuation. Sequence G.P is typed much like parallel composition G|P ,
except that activeness resources in P additionally depend on activeness of the
complement of G’s subject port sub(G). Thanks to this, analysing a bound
output a(νb).Pb (where Pb is an input on b) or its encoding (νb) (a〈b〉 |Pb) in
asynchronous π-calculus produces the exact same type. For our process, f ′.f̄ is
again typed with (R-Pre), where the first three terms are now non-null:(

f ′ : λ; J f ′
1 ∧ f̄ ′1

)
�
(

; f ′
1
A/> J

)
� Γ35/ f̄ ′A ` f ′.f̄

Dropping the unneeded f ′
1
A statement we get

ΓT =
(
f : λ, f ′ : λ; f̄A/ f̄

′
A J f̄0 ∧ f1 ∧ f ′0 ∧ f̄ ′1

)
` f ′.f̄ (36)

Remote Behaviour. The fourth statement in the prefix rule plays two roles,
respectively through the local and environment components of the instantiated
channel σ[tf ]. First, it states that, if the input on a channel is active and
responsive then it will behave according to the protocol specified in the channel
type whenever queries are sent to it. For the b〈tf〉 process, this is written
(t̄A ∨ f̄A)/ bAR, where the left side is just (27) from page 31 with t and f
replacing 1 and 2 (and omitting terms with a zero exponent). Second, as was
already done by the type systems of the previous sections, it sets upper bounds
on how many times the local side is permitted to use the parameters’ ports. In
this case we get t1 ∨ f1 in the environment side, which effectively prevents any
part of the process to do at t and f anything more than a input-guarded sum
at t and at f . Together with the subject b handled as in previous examples, we
get the following:(

b : Bool, t : λ, f : λ; (t̄A ∨ f̄A)/ bAR J (t1 ∨ f1) ∧ (b̄? ∧ bω)
)
` b〈tf〉 (37)

As in (36), the t′-prefix adds a dependency on t̄′A to all activeness resources,
effectively turning the bAR dependency into bAR ∧ t̄′A:

ΓF =
(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A) J (t1 ∨ f1) ∧ (b̄? ∧ bω)

)
` t′.b〈tf〉 (38)
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Typing Sums. In the rule (R-Sum), a process type having no “concurrent
environment pi′” prevents a third-party process to attempt selecting more than
one branch of the sum, and, by contraposition, guarantees that any attempt
to select a branch of the sum (by communicating with its guard) will succeed,
which is what activeness of the branching means.

Definition 6.6.1 (Concurrent Port Use) Let {pi}i∈I be a set of ports.
Then:

• A behavioural statement Ξ has concurrent pi if there is no i ∈ I such that∧
i′∈I\{i}(pi′

0) � Ξ.

• A behavioural statement Ξ ∨ Ξ′ has concurrent pi if and only if (at least)
one of Ξ or Ξ′ has.

• A process type (Σ; ΞL J ΞE) has concurrent environment pi if and only if
ΞE has concurrent pi.

A sum T +F is given, through (R-Sum), the type (t′+ f ′)A/ ε∧ (ΓT ∨ΓF ),
where ΓT and ΓF are respectively the types of T and F , and t′, f ′ their guards:
depending on the above definition, the process may (ε = >) or may not (ε = ⊥)
offer a branching t′+f ′, and in addition (“∧”) selects (“∨”) one of ΓT and
ΓF . The decoupling between the guards and the continuations is done to make
explicit which channels must be used to make the process branch. In the example
(1), in addition to (t′ + f ′)A, the type for the continuation of the a-output is
obtained from (36) and (38):

(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A) ∨ (f̄A/ f̄

′
A) J

(t1 ∨ f1) ∧ b̄? ∧ bω ∧ f̄0 ∧ f ′0 ∧ f̄ ′1
)
` t′.b〈tf〉+f ′.f̄ (39)

We run (R-Pre) once more in order to type the full a-output. Now the
guard has two bound names bn(a(νt′f ′)) = {t′, f ′}. For our purposes we only
need the third and fourth factors:

• Remote behaviour
(
t′: λ, f ′: λ; (t̄′A ∨ f̄ ′A)/ aAR J t′

1 ∨ f ′1
)

• Continuation(
Σ; (t̄A ∨ f̄A)/ (bAR ∧ t̄′A ∧ aA)∨

(f̄A/ (f̄ ′A ∧ aA)) J (t1 ∨ f1) ∧ b̄? ∧ bω ∧ f̄0 ∧ f ′0 ∧ f̄ ′1
)

The � operator now has to do dependency reduction (Definition 6.3.4 on
page 35): The remote behaviour provides either t̄′A / aAR or f̄ ′A / aAR, and
in the continuation either (t̄A ∨ f̄A) depends on t′A, or f̄A depends on f ′A.
Remember, for activeness resources, if α depends on β and β on γ, then α
depends on (β ∨ γ), so the two dependency statements in the continuation
become respectively (t̄A ∨ f̄A)/ (t′A ∨ aAR) and f̄A/ (f ′A ∨ aAR).
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Binding. The binding operator (Definition 4.5.4) acts on dependency state-
ments as follows:

Definition 6.6.2 (Binding) On dependencies, (ν̄x)ε is the logical homomor-
phism such that:

(ν̄x)pk
def
=

 ⊥ if n(p) = x and k = A
> if n(p) = x and k = R
pk if n(p) 6= x

On behavioural statements, (νx) Ξ is the logical homomorphism such that:

(νx) (pR/ ε) =

{
> if n(p) = x

pR/ (ν̄x)ε otherwise

and

(νx)

((∑
i∈I

pi

)
A

/ ε

)
=

 ∑
i∈I:n(pi)6=x

pi


A

/ (ν̄x)ε

The degenerated case where {i ∈ I : n(pi) 6= x} is empty gives just >.

Combining the above five factors and binding t′ and f ′ yields the following:

(
a : Bool, t : λ, f : λ;

(t̄A ∨ f̄A)/ (bAR ∧ aAR) ∨ f̄A/ aAR J

aω ∧ (t1 ∨ f1)
)
` a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (40)

Subject Responsiveness. A port is responsive if it provides all resources
given in the channel type, which is what the last statement in the (R-Pre) rule
states. For r(tf), this is written rR/ (t̄A∨ f̄A), where the right hand side is just
(21) from page 30 with t and f replacing 1 and 2. Composing with (40) reduces
the dependency chain and we obtain rR/ (bAR ∧ aAR), as required.

Replication. When typing a replicated process like ! a(ỹ).P or ! (νz̃) a〈x̃〉.P ,
#(G) is ω and the last three factors must be replicated. We already saw in
Definition 4.5.3 how to compute process type replication Γω. We claim that
Lemma 4.5.2 still holds when process types include dependency statements. We
omit the proof but it can be shown in two parts: If Γ doesn’t use disjunction
then n = 2 satisfies the requirements (although n = 1 may also work for some
processes) and Γ2 replaces all non-zero multiplicities by ?. Secondly, if Γ’s nor-
mal form contains m ∨-separated terms then n = 2m satisfies the requirements,
as this gives a chance for a dependency chain traversing all m terms to be re-
duced (and the factor 2 sets multiplicities to ? as before). This is shown by
induction on m.

6.7 Type System Tuning

In addition to what was noted in Section 4.6 for (R-Pre), (R-Sum) is not
completely specified, as it permits some strengthening of ΞE. Again, the type
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system is sound no matter how it is obtained the type system is sound, and
we left it unspecified to permit some tuning of the type system behaviour. We
suggest a few ways of choosing environment behaviour:

• For ΞE in (R-Sum), the simplest way is to just leave ΞE at the weakest
possible permitted by the rule, but this is usually not desirable because it
often causes ε, the sum activeness dependencies, to be ⊥. On the other
hand this permits deactivating the type system check for race-conditions
like

(a.P+b.Q) | ā | b̄ (41)

• A usually preferable way is to take ΞE =
∧
i ΞEi ∧ (

∨
i p̄
?
i ), which forces

(
∑
i pi)A to hold, but would reject (41) as unsafe.

7 Further Extensions

7.1 Events and Non-Transitive Dependencies

We describe in this section an extension to the typing notation that, although it
isn’t strictly necessary, significantly increases the set of processes correctly anal-
ysed by the type system. Namely, events permit non-transitive dependencies
(α depending on β and β on γ but α not depending on γ).

Consider the process a(xy).x̄.ȳ | a〈bc〉 | b.c, where all names are linear, ac-
tive and responsive. It exhibits the following dependencies: By definition of
responsiveness, āR/ (bA ∧ cA). Because of prefixing, cA/ b̄A. As b̄A is provided
through parameter instantiation, it depends on a being input active and respon-
sive: b̄A/ aAR. Reducing these three dependencies would result in āR/ aR, and
a similar reasoning can be applied (just before the (νxy) binding done by the
(R-Pre) rule) to show aR/ āR, so we end up with (aA ∧ āR)/⊥. The problem
is that output responsiveness should be computed assuming the remote side is
active and responsive (available and behaving as specified in the channel type).
So for the above example, when computing āR’s dependencies, b̄A is assumed
to be available. However, if b̄A is considered on its own, it does depend on both
aA and aR. Note that a common approach to this problem is to consider each
parameter (and in turn their parameters, etc) as an individual resource (see
e.g. Kobayashi) rather than grouping all of them into a single “responsiveness”
resource.

A second example is t̄.(a(x).b.x | b̄), where t is plain and b linear. The b.x
part implies aR/b̄A. Because of prefixing, b̄A/tA. However, input responsiveness
doesn’t require the input to be available, but just that if it gets consumed, a
reply will be sent. In this case, if the input is consumed then t̄ must necessarily
have been consumed as well, so that b doesn’t have dependencies. So aR/ tA is
not required, and we have aR/>.

For an (admittedly a bit far-fetched) example where āR appears at the other
end of the chain, consider

q.
(
! z | a〈b〉 | a(x).p(y).x.y

)
| p〈q〉 | P

where P contains active and responsive a-output and p-input. We have the
chain zA/ q̄A/ pR/ āR/ b̄A, but zA does not depend on b̄A, since by the time
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a〈b〉 comes to top-level, zA no longer needs q̄A, and so q̄A’s dependency on ā’s
responsiveness no longer matters. In other words, as long as the q-prefix hasn’t
been consumed, we have only zA/ q̄A/ pR, and after q has been consumed, we
have zA without dependencies and q̄A/ pR/ āR/ b̄A.

We address all these cases through the concept of events. An event is a
property related to the state of a process that either holds or doesn’t. An
example is “the a-server has received a query”. Another example is “this and
that prefixes have communicated” (where some unambiguous way to identify
which prefixes “this” and “that” refer to is assumed).

The notation for process types from Definition 5.0.1 on page 23 is extended
as follows:

Ξ ::= · · ·
∣∣ l

∣∣ l̄

where l is taken from some infinite set disjoint from N .
We do not provide a way to formally express such an event, but only assume

that, for a particular event and a particular state of a process, it has a well-
defined truth value. Then, l corresponds to > is the event has occurred, and to
⊥ if it has not. Its negation, l̄, corresponds to ⊥ if the event has occurred, and
to > otherwise. To the definition of weakening we add the following rule:

l ∨ l̄ ∼= >

In the first example above, let l stand for “the communication on a has
taken place”. Then responsiveness is vacuously true as long as l did not occur,
which can be expressed with āR/ (l̄∨ (bA∧ cA)), and dependency on the remote
activeness and responsiveness is only needed as long as l has not taken place:
b̄A/ (l∨aAR) and c̄A/ (bA∧ (l∨aAR)). The rest stays the same: bA and cA/ b̄A.
Substituting bA by > and cA by b̄A in the output responsiveness statement gives
āR/ (l̄∨ b̄A) as before. Substituting b̄A by l∨aAR yields āR/ (l̄∨ l∨aAR) which
is equivalent (by simplifying the events) to āR/>, i.e. a is output responsive in
the process.

As far as the second example is concerned, we have aR/(l̄∨b̄A) and b̄A/(l∨tA),
which combine into aR/ (l̄ ∨ l ∨ tA), which reduces to aR/>, as required.

The rule (R-Pre) is modified as follows:

Γ ` P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = ?)⇒ ε = ⊥(

p : σ; J pm ∧ p̄m′
)
�(

; p
#(G)
A / ε J

)
�

(νbn(G))
(

Γ/ (l ∨ p̄A) �
σ[x̃]/ (l ∨ p̄AR) �(

; pR/ (l̄ ∨ σ[x̃]) J
) )#(G)

` G.P

(R-Pre)

7.2 Delayed Dependencies and Self-Name Passing

Before summarising our results, we propose in this section another extension to
the type notation that basically permits names passing references to themselves
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while still being responsive. We will not prove that these changes preserve the
type system properties.

Delayed dependencies permit discarding certain circularities connecting two
different depths of a recursive channel type, such as ! a(x).x〈a〉 which is a server
responding to queries by a pointer to itself. Another example is (42) on page
61 where GeomR/ succR and succR/ GeomR reduce to GeomR/> rather than
GeomR / ⊥. This extension can of course be applied simultaneously to the
previous one since they operate on different parts of the theory.

In a statement γ/ε, a resource α in ε is now annotated with a delay αd where d
is any number or −∞ representing the “difference in depth” in the channel type.
Note that, when this extension is in use, the abbreviation (pmA/ε) = pm∧(pA/ε)
should probably be avoided as it would create confusion.

The following examples illustrate nicely the semantics of delays.

• aR/ uA2 ` a(x).x(νy).ū.ȳ — the u-dependency is only required after two
exchanges on a (specifically, a and x)

• ūA/ āAR
−2 ` a(x).x(νy).ū.ȳ — the ū-output is available only after two

exchanges on a has been performed. Note the difference of the sign with
the previous example ; aR starts providing resources before needed uA,
and ūA needs aAR before it provides resources.

• bA/ aA0 ` ā.b — the delay is 0 because aA is needed before one can even
start interacting with b.

• aR/ bAR
0 ` ! a(x).b〈x〉— a (depth 1) answer from a depends on a (depth

1) answer from b.

• aR/ bAR
2 ` ! a(x).x〈b〉 — in order to do n steps of a conversation with

a, one needs to be able to do n− 2 steps of a conversation with b.

When substituting resources for dependencies in the reduction relation “↪→”,
ε 7→ εd is the logical homomorphism such that

(
αd
)
e = αd+e where + is the

usual numerical addition, extended with ∀d : −∞ + d = −∞. When a substi-
tution would introduce a self-dependency α/ αd, αd is replaced by > if d > 0,
and ⊥ otherwise.

Continuing the last example above, ! a(x).x〈b〉! b(x).x〈c〉 would have type
aR/ bAR

2 � bR/ cAR
2, which reduces to aR/ cAR

2+2 = aR/ cAR
4. If c = a

then we get aR/>.
The channel instantiation operator σ[x̃] adds the −∞ delay to every de-

pendency declared in the channel type, and circular dependencies added for
completion have delay 0.

The transition operator delays responsiveness dependencies by −1:

Γ o a(x̃)
def
= Γ o a� σ[x̃]/

(
aR
−1 J āR

−1
)

and similarly for output, making explicit the fact that we descended one step

into the channel type. For instance in a(x).ū.x̄
a(t)
−−−−→ ū.t̄, the dependency

aR/ uA
1 becomes t̄A/ uA

1−1 = t̄A/ uA
0.

Finally, the prefix rule extended with delays is as follows:
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Γ ` P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = ?)⇒ ε = ⊥

(νbn(G))
( (

p : σ; J pm ∧ p̄m′
)
�(

; p#(G) ∧ (pA/ ε) J
)
�

Γ/ p̄A
0 �

σ[x̃]/ p̄AR
−1 �(

; pR/ σ[x̃]+1 J
) )#(G)

` G.P

(R-Pre)

7.3 Properties

This section summarises the properties enjoyed by the type system.

Proposition 7.3.1 (Subject Congruence) Let Γ ` P ≡ P ′. Then Γ′ ` P ′

for some Γ′ ∼= Γ.

Proposition 7.3.2 (Subject Reduction) Let (Γ;P ) be a typed process such

that Γ ` P . Then, for any transition (Γ;P )
µ−−→ (Γ o µ;P ′), ∃Γ′ s.t. Γ′ � Γ o µ

and Γ′ ` P ′.

The proof is given in Section A.3.

Proposition 7.3.3 (Decidability) There is a decidable algorithm that, given
a channel type mapping Σ and a process P , either constructs a process type
Γ = (Σ; ΞL J ΞE) where Γ ` P and Γ is in normal form, or, if there is no such
Γ, rejects the process.

Proof This result follows from the type system being syntax directed and all op-
erators being themselves decidable. Most operators have declarative definitions,
in particular, logical homomorphisms are inductively defined on the behavioural
statement structure, with the notable exceptions of replication (Definition 4.5.3)
and closure (Definition 6.3.4). An algorithm for the former is given after the
corresponding Lemma (page 21), and the proof of Lemma 6.3.5 includes an al-
gorithm for computing closure. Finally, construction of a normal form is given
in the proof of Lemma 6.3.2. 2

And finally our main result, connecting decidable typability and undecidable
semantics:

Proposition 7.3.4 (Type Soundness) If Γ ` P then Γ |= P .

The proof is given in Section A.5.

8 Further Reading

In this section we present some related research, together with, when applicable,
an encoding of their notation into ours, to help comparison.
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8.1 Activeness

8.1.1 Sangiorgi: The Name Discipline of Uniform Receptiveness

This [San99] is one of the first papers to address the property of activeness
(which they call “receptiveness”). It works on asynchronous monadic π-calcu-
lus with sums and matching (which we don’t handle). A linear receptive name
corresponds, in our terminology, to bi-linear names that are input active, like
a in a1

A ∧ ā1, and an ω-receptive name is the same, but with ω multiplicity on
input and plain multiplicity on output, like aA

ω ∧ ā?.
Their (Γ; ∆) process types can then be translated into our process types by

having a name a’s local multiplicities be āΓ(a)∧a∆(a) for the linear type system
(with A(a) = 1 if a ∈ A and 0 otherwise), and the complement multiplicities
ā1−Γ(a) ∧ a1−∆(a) on the remote side. For the ω-receptiveness type system, we
have, for each a, ā?Γ(a) ∧ aω∆(a) on the local side, and ā? ∧ aω(1−∆(a)) on the
remote one. Sangiorgi’s plain names correspond to a? ∧ ā?, both locally and
remotely (names plain on both ports, and without activeness).

Note however that his type system is typing strong activeness, so that it does
not require dependency analysis, but also is not subsumed by ours. If however
we weaken his soundness theorem to allow a weak input transition when using
a receptive name, then our semantic definition matches his, and typability of
our type system strictly implies his.

He also provides definitions for labelled bisimilarity and barbed equivalence
that respect the concept of receptiveness. Generalising those definitions, in
particular 5.3, the one for labelled bisimilarity, would however require some
work, because if receptive names are allowed to carry receptive names, then the
x . v sub-process is not complete.

8.1.2 Pierce, Sangiorgi: Typing and Subtyping for Mobile Processes

This paper [PS93] studies input and output capabilities (in our terminology,
types such as >, a?, ā?, and a? ∧ ā?), and establishes a subtyping relation,
which permits typing a〈x〉 while having x’s type different from a’s parameter
type (using the subtyping relation covariantly or contravariantly depending on
which capabilities of x are used by a’s receiver).

Their types (S̃)I with I ∈ {r,w,b} are easily encoded into our notation, as
follows:

[[ a : (S̃)I ]]
def
=
(
a : ([[ S̃ ]]); a?Ir ā?Iw J a?Īr ā?Īw

)
where ?Ic is ? if I ≤ c, 0 otherwise, where ?Īc is the same but using c ≤ I, and
[[S1, . . . , Sn ]] is an abbreviation of [[ 1 : S1 ]], . . . , [[n : Sn ]].

Their types are thus more specific (all names are plain and none can be
declared active) but, with equivalent types, their type system accepts more
processes than ours, thanks to subtyping.

8.1.3 Kobayashi, Pierce, Turner: Linearity and the π-calculus

That paper [KPT99] is a specialisation of our system in that they only have
inert (multiplicity zero), linear (only one port is used, and linearly), bi-linear
(both ports are linear) and plain names (which they call ω), and no behavioural
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property. They also introduce (ω; ?) channels in section 7.3 (and call them ∗).
Like in Section 8.1.2, we can encode their types as follows:

[[ a : pm[T̃ ] ]]
def
=
(
a : ([[ T̃ ]]); a[[m ]]pi ā[[m ]]po J a[[m ]]p̄i ā[[m ]]p̄o

)
where mpc is m if c ∈ p, 0 otherwise, [[ 1 ]]

def
= 1, and [[ω ]] = ?. [[T1, . . . , Tn ]] is

an abbreviation of [[ 1 : T1 ]], . . . , [[n : Tn ]].
They provide definitions for barbed bisimilarity, and show some confluence

results for linear channels.

8.1.4 Amadio et al.: The Receptive Distributed π-calculus

As the title suggests, this paper [ABL03] is on a distributed setting, where
they have the additional issue that, for a communication to succeed, its two
ends must be at the same site (which requires extra care when checking for
deadlocks). They also have matching, on a special set of names called keys.

So, the setting is more complex, with the trade off that their types are very
simple — all names are (in our terminology) active non-uniform ω input and
plain output and, just like [San99], they guarantee strong activeness, where no
internal action is tolerated between creation of a new name and it being ready
to use). More importantly, as a consequence of having I/O alternation and only
input activeness, they are only concerned about messaged being received — no
reply is guaranteed.

Their work is mainly interesting in the distributed setting — restricting it to
a local setting would reduce to the essentially syntactic check that all outputs
have at least one corresponding unguarded input.

Also note that they concentrate on non-uniform activeness based on recur-
sion (like a in µX.a(x).(x〈t〉 | a(y).(x〈t′〉 |X)) where µX.P stands for a recursive
process), which can’t be characterised in our type system without modification,
as the closest we have is uniform activeness obtained through replication.

8.1.5 Acciai, Boreale: Responsiveness in process calculi

This paper [AB08a] addresses concerns very close to ours, through two dis-
tinct type systems. Note that what they call “responsiveness” is closer to
what we call “activeness”. Again, their setting is simpler than ours, in that
it works on synchronous π, I/O alternating, doesn’t consider combinations
of active and non-active names, and does not support choice or conditional
properties, as it uses numerical levels to track dependencies. On the other
hand, they present, with their system `1, an extension for recursive processes
which is more powerful than our type system, in that it permits handling un-
bounded recursion such as a function computing the factorial of its parameter:
! f(n, r). if(n = 0) r〈1〉 else (νr′) (f〈n− 1, r′〉 | r′(m).r〈n ∗m〉). Our type system
rejects such a process, because the recursive call would create a dependency
fR/ fR.

We conjecture that their analysis, based on the well-foundedness of param-
eter domains, could be adapted to our behavioural statements by using delays
(Section 7.2) typing ! a(ỹ).b〈x̃〉 with aR/ bR

d where d > 0 only if x̃ is “lighter”
than ỹ. A circular dependency chain containing only such dependencies reduces
to > rather than ⊥. In the factorial example, 〈n − 1, r′〉 being “lighter” than

53



〈n, r〉 (because n − 1 < n), the self-dependency becomes fR/ fR
1 and cancels

out into fR/>.

Types A channel type can be responsive, ω-receptive or +-responsive. For
the last case they use a concept mostly equivalent to our multiplicities, which
they call “capabilities”. Their channel types can then be encoded into ours as
follows:

• Inert type: [[ a : I ]] =
(
a : λ; J a0 ∧ ā0

)
• Responsive name: [[ a : T [ρ,k] ]] =

(
a : ([[ 1 : T ]]); aA ∧ āA J a0 ∧ ā0

)
• Responsive parameter: [[ 1 : T [ρ,k] ]] = (1 : ([[ 1 : T ]]); āA J aA)

• ω-receptive name: [[ a : T [ω,k] ]] =
(
a : ([[ 1 : T ]]); aωA ∧ ā? J a0

)
• ω-receptive parameter: [[ 1 : T [ω,k] ]] = (1 : ([[ 1 : T ]]); ā? J ∧) aA

ω

• +-responsive names are encoded similarly, using the following correspon-
dence: on inputs, capabilities n, s, m and p correspond respectively to
total multiplicities 0, 1, ? and ω, and on outputs, n, s, m and p corre-
spond respectively to total multiplicities 0, ?, ? and ω.

We have no way to prevent a name to be sent around (in object position),
so their ⊥ type can’t be encoded. Encoding it like I is a good approximation,
however. Also, their levels k are ignored by this encoding, because they are
implicitly contained in the behavioural statement which is inferred by the type
system. Those levels basically put an upper bound on the length of substitu-
tion chains ({β/α}{γ/β} · · · ) that can be done in activeness dependencies before
reaching the >-dependency. The above encoding is not completely accurate but
corresponds to what their type system enforces.

Semantics As far as terminology is concerned, their “responsiveness” prop-
erty mostly corresponds to our “activeness” property, on processes in which
responsiveness (in our terminology) holds on all names. It is not strictly equiv-
alent because we work with a labelled transition system and define activeness
and responsiveness in terms of interactions with the environment, while they
work in a reduction setting, and define responsiveness in terms of internal ac-
tions. The correspondence can be made by comparing our activeness on a port
p ∈ {a, ā} in a process P to their responsiveness on channel a in a process like
P |Q where Q is a process interacting on p̄ (such as a〈b〉 or a(x).Q′, depending
on p).

Note that their semantic definition is also weaker as it accepts as responsive
channel a in “unbalanced” processes like (a | ā) | a or (a | ā) | ā, where the right-
most a or ā can be seen as the “testing” process Q, but may not succeed.
Also they require more than fairness on the scheduler as they would consider s
responsive in process

! a(x).x̄ | ! a(x).a(νy).y.a〈x〉 | a〈s〉

implementing a random walk. However it seems that strengthening their se-
mantic definition to reject such cases would preserve soundness of their type
system.
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It should be noted also that they require all names to be “responsive” (or
ω-receptive, which is essentially the same but with another multiplicity) —
they don’t consider processes where both “plain” and “responsive” names are
involved.

Power The base form of both their type systems, described in their sections
3 and 6 are strictly subsumed by ours.

Similarly to what was presented in this paper, their first type system uses
dependency analysis to check strong linear activeness or strong ω-activeness on
input ports, and activeness for linear output ports. For a process like b̄ | b.ā, a
dependency a → b indicates the order in which linear channels are consumed.
it uses levels to check delegation, in a way that corresponds more or less to our
responsiveness dependency chains, e.g. ! a(x).b〈x〉 requires b’s level to be smaller
than a’s.

Their first system rejects a number of processes accepted by our type system,
such as “half-linear names” like t in (νt) (t̄ | t.P | t.Q), as well as processes such as
(νa) (a(x).(x̄ | b(y).ȳ)|a〈t〉) because the input on b is not immediately available.
It is however weakly bisimilar to b(y).ȳ, which is typable.

On the other hand the extension for handling recursive functions goes beyond
what our type system is capable of, as already said.

The second type system allows guarded inputs, the “half-linear names” al-
ready mentioned and replicated outputs, but rejects some recursive functions
such as the “factorial” one given previously. It is also strictly subsumed by ours
because for instance they do not allow guarded free replicated inputs.

We would like to point out that this paper answers the question they rise at
the end of Section 6.2, concerning the generalisation of dependency graphs when
inputs may be nested. They give an example of process that would require such
a generalisation: b(x).a〈x〉 | c(x).a(y).x〈y〉 | c〈b〉, where all names are assumed
responsive (in their terminology, or “bi-linear active” in ours). That process
should be ruled out because it reduces to b(x).a〈x〉 | a(y).b〈y〉, where a and b
are now clearly deadlocked. Using dependency graphs on responsiveness (in
addition to activeness) rules out the first process, because it contains the cycles
bR/ c̄R/ aR/ bR and cR/ āR/ b̄R/ cR.

In conclusion, generalising their analysis of recursion on well-founded do-
mains on our type system would give a type system that is strictly more powerful
than both their systems, so that it is no longer necessary to have two separate
systems with different typing strategies.

8.1.6 Kobayashi: TyPiCal

This [Kob08] is an implementation of a lock-freedom type system [Kob02a].
Although it also performs termination and information flow analysis we are
particularly interested in its lock-freedom analysis.

Terminology We first introduce a few concepts used by TyPiCal.

Definition 8.1.1 (Deadlock) An input or output prefix in a process P is
deadlocked if it is top-level and P can’t be reduced.

An input or output prefix in a process P is deadlock-free if no reduction of
P leads to that prefix being deadlocked.
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For example, if @Q : P −→ Q then all top-level actions in P are deadlocked.
In ! a(x).P |Q, all a-outputs are deadlock-free. In a.b̄ | b.ā, both a and b are
deadlocked. In P =?.a | ā, a is deadlock-free, but ā isn’t (P −→≡ ⊥.a | ā in
which ā is deadlocked, although P −→∼ a | ā in which ā is deadlock-free).

Deadlock-freedom is not a very interesting property on its own, because for
instance P |Ω is deadlock-free as it can always be reduced.

One way would be to require all processes to terminate, but a more general
approach is introduce to the following (strictly stronger) property:

Definition 8.1.2 (Livelock-freedom) An action of a process P on a port p
is livelock-free if it reaching top-level implies it can be consumed.

For example, a request to a server is livelock-free is and only if it is guaranteed
to be eventually received. In ! a(x).x̄ | a〈b〉 | b, the input at b is livelock-free,
and in P = ! a(x).b〈x〉 | ! b(x).a〈x〉 | a〈s〉 | s, the s-input is deadlock-free but not
livelock-free.

This property is related to activeness in that (although either definition
need to be adapted as we work in a labelled setting and TyPiCal in a reduction
setting) p is livelock-free if and only if the complement port p̄ is active.

Channel usages are a generalisation of our multiplicities, and tell for a par-
ticular channel how many times the input and output ports are used, and in
what order.

Definition 8.1.3 (Channel Usages) The usage of a channel is an expression
given by the following grammar:

U ::= 0
∣∣ ρ

∣∣ u.U
∣∣ (U |U)

∣∣ U&U
∣∣ µρ.U

u ::= !
∣∣ ?

Usage !.U does an output and then U ; Usage ?.U does an input and then
U . (U1|U2) uses according to U1 and U2 in parallel. U1&U2 uses according to
either U1 or U2 but not both. We write chanU (σ̃) for a channel of usage U and
parameters σ̃. When the context is clear, we may write just the usage for a
parameter-less channel.

For example, a.b | b̄.c̄ uses a according to ?, b according to ?|! and c accord-

ing to !. In ! a(x).x〈1〉, a has usage ∗?|! (with ∗? def
= µρ.(?.ρ)), and thus

chan∗?|!(!), b :! as a channel type (the parameter usages give the behaviour of
the channel’s input side, and here the a-input outputs on x). As a last exam-
ple, say a 6= t has usage U1 in P and U2 in Q. It then has usage U1&U2 in
(νt) (t̄ | t.P | t.Q).

Obligation and Capability levels generalise the levels used in [AB08a]:

Definition 8.1.4 (Obligation and Capability Levels) An obligation level
for an (input or output) primitive is a number (or ∞) telling when it will be
ready to fire (i.e. at top-level), while a capability level tells, if that primitive is
at top-level, when it will actually be consumed.

These levels are included into usages with the syntax u ::= !tOtC
∣∣ ?tOtC .

For example, consider the process a.b | b̄.c̄. The input a is at top-level and
thus has obligation level 0: Assuming it gets consumed at time t, b will be ready
to fire at time t + 1. The output b̄ is immediately ready, but will actually get
consumed at time t+1. b has capability 0 because no matter when it is brought
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to top-level, b̄ will be ready to communicate with it. To sum up, we get the
following: a : (?0

t ), b : (?t+1
0 |!0t+1), c : (!t+2

t′ ).
In this example, the obligation level of a port is equal to the capability level

of its complement. However this is not always the case in presence of non-
linearity: In ā.x | ā.y | a.z | x̄, a has usage (!0∞|!0∞|?0

0) — both ā have capability
zero because neither is guaranteed to succeed. Being at top-level, all a and ā
have obligation zero.

As expected, activeness, responsiveness, livelock-freedom, obligation and ca-
pability levels are tightly related:

• A term is active if and only if it has a finite obligation level and all com-
plement actions have a finite capability level.

• A term is strongly active if and only if it has a zero obligation level and
all complement actions have a zero capability level.

• A term is livelock-free if and only if it has a finite capability level.

• Input (resp., output) responsiveness corresponds to finiteness of all obli-
gation (resp., capability) levels on parameter usages.

Power There is no subsumption relation either way between our system and
the one implemented by TyPiCal.

On the one hand, the usage information is strictly more expressive than
multiplicities (which can mostly be encoded in terms of usages, with the slight
difference that usages can’t express the uniformity inherent to ω-multiplicity).
This permits for instance TyPiCal to handle locks correctly, as well as processes
like a | a.s̄ | ā | ā (where s̄ is active because a’s input and outputs are balanced,
unlike for example b in b | b.s̄ | b̄ | b̄ | b̄). Multiplicities would dismiss locks as
well as that port a as plain names.

On the other hand, it uses numerical levels, which permit forcing basic depen-
dency relations between elements of the usages of different channels, but can’t
encode selection or branching as it amounts to having no “∨” in behavioural
statements. Moreover, events described in Section 7.1 permit an accurate anal-
ysis of processes such as

(νt)
(
t̄
∣∣ t.(! z|! a(x).z̄.x̄)

∣∣ t.! a(y).ȳ
)

which randomly picks a “slow” or a “fast” a-input. TyPical incorrectly marks
the z̄ output as unreliable (not livelock-free). Labels make z’s unreliability (or
non-activeness, or infinite obligation level) irrelevant when checking a’s respon-
siveness.

It should be noted that neither our system nor TyPiCal recognises a as input
active in that process, which suggests a future research direction.

Finally, TyPiCal does not handle recursive channel types that would be
required to analyse processes like a〈a〉 or ! a(x).x〈a〉 but we believe it would be
a rather simple extension, as was the case for our system.

Our strategy of using explicit behavioural statements instead of obligation
(and capability) levels has the advantage of describing a process as an open
system, in that it describes how the process would react when composed with
an arbitrary other process. For instance, if P = a.b, then seeing P as a closed
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system implies that b will never be available. Describing it with a behavioural
statement makes explicit in the type that b becomes active if ā is.

8.1.7 Kobayashi: Type Systems for Concurrent Programs

This paper [Kob02b] covers most of the theoretical basis (including channel
usages, capability and obligation levels) for TyPiCal, in the form of a type sys-
tem being described incrementally, similarly to the present paper. The analysis
given in Section 8.1.6 therefore remains mostly valid. The paper also covers tail
recursive functions (similarly to [AB08a]), and a number of interesting exten-
sions such as session types and termination analysis. Their types don’t seem to
describe a separation of input and output protocols in channel types.

8.1.8 Kobayashi and Sangiorgi: A Hybrid Type System for Lock-
Freedom of Mobile Processes

This paper [KS08] combines (arbitrary) deadlock, termination and confluence
type systems on sub-processes of the one being analysed (thereby permitting
analysis of globally divergent processes). This work uses typed transitions rem-
iniscent of ours, and their “robust” properties are analogous to our semantics
permitting arbitrary transition sequences µ̃i. Channel usages are like those
used by Kobayashi in previous works [Kob02a, Kob08], with the same expres-
sive power and limitations. The typing rules discard those processes that rely on
the environment in order to fulfil their obligation. Hence well-typed processes
are lock-free without making any assumption on the environment. Advanced
termination type systems such as those proposed by Deng and Sangiorgi [DS06]
permit this hybrid system to deal with complex recursive functions like tree
traversal.

8.2 Generic Type Systems

The three following papers have a generic approach, as opposed to the previous
ones (and the present paper) that are aimed at specific properties. They have
to be instantiated with the desired property, expressed in various ways.

8.2.1 Igarashi and Kobayashi: A generic type system for the Pi-
calculus

This [IK01] is a framework for type-checking various safety properties such as
deadlock-freedom or race-freedom. Types are abstract processes — a simplified
form of the target process — and soundness theorems establishing that if the
abstraction is well-behaved then so is the actual process. It is particularly useful
for safety properties (in contrast with activeness with is a liveness property) as
subject reduction is proved once and for all, so that instances of the generic
type system only need to show that if the abstract process is well-behaved, the
target process is not immediately breaking the desired property. Types use “+”
in essentially the same sense as we do, and “&” corresponds precisely to our
∨. The paper includes as examples of instantiations, simple arity-mismatch
checking system, race-freedom and deadlock-freedom type systems.
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8.2.2 Caires and Vieira: Spatial Logic Model Checker

This paper [Cai04] presents a model checker able to check processes for a wide
range of properties, expressed by expressions written in a spatial logic, and is
sound and complete as long as (the state spaces of) the processes are bounded.
Using their logic, activeness of a port p can be written νX.(〈p〉∨23X). Respon-
siveness of a port is a property that depends on the channel type, but it should
be possible to give an inductive translation of channel types to modal formulæ
corresponding to responsiveness on it. The selection connective ∨ is also present
in their logic, with the same meaning. There is however no direct equivalent to
our / connective, so conditional properties need to be encoded by modifying
the activeness formulæ, which may become very complex for statements such
as (34) that include dependencies on responsiveness. Both its strengths and
limitation come from it being purely a model checker. On the one hand, it takes
logical formulæ in input rather than constructing them automatically, it has a
very large complexity due to exhaustively exploring the state space, and doesn’t
terminate when given unbounded processes (unlike a type system such as ours,
that is polynomial in the size of the process, and always terminates). On the
other hand it is complete for bounded processes, and able to recognise activeness
in cases deemed unsafe by our type system due to over-approximation.

8.2.3 Acciai and Boreale: Spatial and Behavioral Types in the Pi-
Calculus

This type system [AB08b] combines ideas from the Kobayashi’s Generic Type
System (in that types abstract the behaviour of processes) and Spatial Logic,
by performing model checking with spatial formulæ on the types rather than
on the processes. This results in a generic type system able to characterise
liveness properties such as activeness, and supports choice, both through the
process constructor + and logical connective ∨. It is parametrised by “shallow”
(without direct access to the object parts of transitions) logical formulæ, that it
checks automatically using a model-checking approach. Being based on model
checking, it suffers from the same limitations as the previous work, in terms
of computation complexity, and difficulty of expressing conditional properties
or responsiveness (by “shallowness” of the logic — note once more that what
the authors call responsiveness corresponds to what we call activeness). On
the other hand, restricting it to shallow logic formulæ allows working on the
abstracted process, making it more efficient than a fully general model checker.
Like the previous work and unlike the Generic Type System, it doesn’t require
proving soundness of a consistency predicate, as it is based on a fixed formula
language.

8.3 Structural Analysis

8.3.1 Bodei, Degano et al: Control Flow Analysis for the π-calculus

Related to the structural analysis used for the soundness proof (Section A.5), the
theory developed in this paper [BDNN98] is focused on the following problem:
P being a (monadic — but the theory seems straightforward to generalise to
the polyadic setting) π-calculus process, what is the set of names that can
be carried by a given channel, while the process evolves? As the problem is
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not decidable, the authors construct an over-approximation. Note that the
“semantic definition” |=me is really a syntax-directed type system, as exposed
in Section 4, while the actual semantics that relation guarantees is given by
Subject Reduction (Theorem 3.10).

They avoid the problem of α-renaming by inserting channel and binder
markers into the process syntax, then referring to channels by channel mark-
ers rather than names, rather similarly to our “events” l. They do not require
distinct channels to have distinct names, however, avoiding the need for “ex-
tended names” x (and it is acceptable precisely because they construct an over-
approximation). The more distinct channels are used in the process annotation,
the more precise the analysis will be.

This question — what is the set of names that can be carried by a given
channel — is relevant to our research in two ways.

First, for a liveness property pk to be available in a process, there needs
to be a guard G somewhere that provides a property qk where either q = p
or q is bound by an input prefix somewhere, and q gets instantiated to p by a
communication partner of that prefix. Our liveness type system handles this
with channel types and parameter instantiations, which is one of its fundamental
limitations. An approach based on computing what names may be instantiated
to what channels might provide a higher degree of accuracy, although we’d
require an under-approximation for liveness to hold.

Secondly, completeness of an annotated type, that is used when dealing with
interference, relies on knowing all communication partners of a given guard G.
For instance in P = a〈t〉.t.A |x(y).y | . . ., if some liveness resource γ is avail-
able in A, proving it is available in P as well requires us to find all potential
communication partners of x〈t〉 and check they enable an output at their pa-
rameter. Finding all x-inputs in a process amounts to finding all names carried
by other inputs, for instance if the process contains a(y).y(z)

l
. . . ., then l be-

comes an x-input if and only if a carries an x. For this part we do need an
over-approximation (but we need more than just a set of names, we need to
unambiguously distinguish all potential communication partners, so some form
of liveness strategy seems unavoidable).

As a chief application of the type system, [BDNN98] proposes an application
to information flow (if the type system concludes that, in P , no “low channel”
ever carries a “high parameter”, one can conclude the process will not leak secret
information).

9 Conclusion

We conclude this paper by reviewing its contributions, the power and limitations
of the type system, and possible future research directions.

We described a type notation and semantics that combine statements about
liveness properties (sA and pR), choice (through branching (p+q)A and selection
ε∨ε′) and conditional properties (ε/ε′). Then the type system outlined in section
6 is able, given a process P , channel types and optionally port multiplicities,
to construct a process type whose local component ΞL contains all information
the type system was able to gather about P ’s behaviour. As the type system is
sound and decidable, it is necessarily incomplete, but still powerful enough to
recognise activeness and responsiveness in many important applications such as
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data representation (we extensively covered an encoding of Boolean values and
operators) or object-oriented style programming. We give an example of the
latter:

An object o responding to methods m1, . . . , mn is represented by a replicated
input

! o(m1 . . .mn).
(
m1(ỹ).P1 + · · · + mn(ỹ).Pn

)
and calling o’s method mi is then done as follows.

o(νm1 . . .mn).mi〈x̃〉

Then, when passing an object o around, one can require the sender to be
input active and responsive, meaning that o must be ready to receive a method
call, and the receiver must be output responsive, meaning that any method call
must obey o’s protocol (an output at o must be followed by an output at exactly
one of its parameters).

Sessions are another example where responsiveness and choice appear to-
gether. Our types require a channel’s type not to evolve over time but this issue
is avoided by having as many channel types as the session contains states, and
passing, the next state as an additional parameter at each step.

Regarding the limitations of our work, we chose to focus on choice itself,
leaving out features like recursivity [AB08a] or subtyping [PS93], and complex
channel usages such as locks [Kob02a], which have been well explored before
in a choice-less context. Note however that integrating recursivity would be
non-trivial because nothing in an encoded Integer type prevents numbers to
be infinite, and yet it may be desirable in some contexts to permit unbounded
numbers. For instance

!Geom(zero, succ).(zero + succ〈Geom〉) (42)

is a random number obeying a geometric distribution, safe for use with arith-
metic operators. Moreover, an addition operator working by induction on the
first parameter would be responsive even if the second parameter is infinite. In
other words, a treatment of responsiveness with recursion would have to include
the concept of finiteness “F” in addition to activeness and responsiveness. The
following example encodes the circuit “r = a+b” and shows that r is responsive
even if b is infinite, but r is finite only if both a and b are finite.

rωA ∧ rR/ (aAF ∧ bAR) ∧ rF/ (aAF ∧ bAF) `
! r(zs).(νt) (t〈a〉 | ! t(x).x(νz′s′).(z′.b〈zs〉+ s′(x′).t〈x′〉))

Note that our current type system (with the “delayed dependencies” exten-
sion) recognises that Geom is responsive, but due to t calling itself, just produces
rR/⊥.

We are currently working on a generic form of the type system exposed
in this paper, that captures the essence of dependency analysis, and can be
instantiated with various liveness and safety properties such as A and R but
also others such as termination and determinacy.
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A Proofs

We prove in this section a number of important properties of the type system,
such as subject reduction, type safety and type soundness.

A.1 Algebraic Properties

A.1.1 Auxiliary Lemmas

All operators used in behavioural statements are idempotent and distributive,
which lets us prove the following property:

Lemma A.1.1 (Nesting Elimination Lemma) Let C[·] and C ′[·] be two be-
havioural contexts and ε a behavioural statement. Then

C[C ′[C[ε]]] ∼= C[C ′[ε]]

Proof
First consider the case C[·] = ε0 ∨ [·].
Repeatedly using the laws ε0∨(ε1∧ε2) ∼= (ε0∨ε1)∧(ε0∨ε2) and ε0∨(ε1∨ε2) ∼=

(ε0 ∨ ε1) ∨ (ε0 ∨ ε2), we transform C[C ′[C[ε]]] to C ′0[ε0 ∨ C[ε]], where C ′0[ ] is
C ′[ ] with ε0∨ prefixing every individual term except the hole. Substituting
C[·] with its definition we get C ′0[ε0 ∨ ε0 ∨ ε] which is ∼=-equivalent to C ′0[ε0 ∨ ε].
Reversing the “ε0-injection” done above, we obtain ε0 ∨ C ′[ε], i.e. C[C ′[ε]].

The proof for C[·] = ε0 ∧ [·] is identical but using ∧ instead of ∨.
Any behavioural context can be written as a composition of contexts of

the above two forms, so let C[·] = C1[C2[· · ·Cn[·] · · ·]]. The statement being
considered is

C1[C2[· · ·Cn[C ′[C1[C2[· · ·Cn[ε] · · ·]]]] · · ·]]

Using the above base case it can be reduced to

C1[C2[· · ·Cn[C ′[C2[· · ·Cn[ε] · · ·]]] · · ·]]

As ∼= is a congruence, the inner C2[·] can similarly be dropped, and so can all
the others. 2

Lemma A.1.2 (Weakening Conserves Structure) Let ∆ = ∆1 ∧∆2, and
∆′ � ∆. Then ∆′ ∼= ∆′1 ∧∆′2 with ∆′i � ∆i for both i. The same property holds
for ∨ instead of ∧ or � instead of �.

Proof Rule η1 ∧ η2 � η1 can be written η1 ∧ η2 � η1 ∧> (and note that η2 � >)
and η1 � η1 ∨ η2 can be written η1 ∨ ⊥ � η1 ∨ η2.

The remaining rules in Definition 6.3.1 either are already in the required
form, or actually define ∼=, in which case one can simply set ∆′i = ∆i for both
i. 2

The following lemma states that a labelled transition can be split into two
phases, one that may perform up to two branchings (by replacing a sum by
one of its elements) and the second does the actual transition. This makes it
possible to split proofs similarly. Note that this lemma only holds because our
process calculus doesn’t include replicated sums such as ! (a+b) (but includes
the strongly bisimilar ! a|! b).
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Lemma A.1.3 (Branching Transition) Let P
µ−−→ P ′ be a transition.

Then there is a process P̂ such that

• P̂ is obtained from P by replacing at most two sums
∑
i∈I Gi.Pi by Gı̂.Pı̂

for some ı̂ ∈ I.

• P̂ µ−−→ P ′, without using the (Sum) rule from the labelled transition sys-
tem.

The following lemma, whose proof is omitted, will be helpful in many proofs:

Lemma A.1.4 (Structural Lemma) Let P be a process and P
µ−−→ P ′ where

sub(µ) = p and (Sum) was not used. Then P is of the following form:

P ≡ (νz̃)
(
Q
∣∣ G.R)

where n(p) 6∈ z̃ and sub(G) = p, and, if µ is an output, obj(G) ∩ (bn(G) ∪ z̃) =
bn(µ). For P ′, either (when #(G) = 1)

P ′ ≡ (νz̃ \ bn(µ))
(
Q
∣∣ R{obj(µ)/obj(G)}

)
or (when #(G) = ω)

P ′ ≡ (νz̃ \ bn(µ))
(
Q
∣∣ G.R ∣∣ R{obj(µ)/obj(G)}

)
.

Now let instead P
τ−−→ P ′, still not using (Sum). Then

P ≡ (νz̃)
(
Q
∣∣ G.R ∣∣ G′.R′)

where there is a name a s.t. sub(G) = a and sub(G′) = ā. Similarly to µ 6= τ
there are four cases for P ′, depending on #(G) and #(G′), but we only show
the one where both are 1:

P ′ ≡ (νz̃ ∪ bn(G′))
(
Q
∣∣ (R{obj(G′)/obj(G)}

) ∣∣ R′) .
Finally, the following lemma gives a few useful properties of process type

operators:

Lemma A.1.5 Let Γ1 and Γ2 be process types, m1 and m2 multiplicities.

• (m1 +m2)−m2 � m1.

• If Γ1 � Γ2 is well defined then (Γ1 � Γ2) \ Γ2 � Γ1

• If Γ1 � Γ2 is well defined and Γ′1 � Γ1 then Γ′1 � Γ2 is also well defined
and Γ′1 � Γ2 � Γ1 � Γ2

• Let Γ ` P , Γ′ ` P ′ with Γ′ � Γ. If Γ2 ` C[P ], using Γ ` P in
the derivation, then there is Γ2 with Γ′2 ` C[P ′] (using Γ′ ` P ′ in the
derivation) and Γ′2 � Γ2.
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A.1.2 Properties of ∼= (Lemma 5.1.2)

Up to ∼=, ⊥ is neutral for ∨ and absorbent for ∧. > is absorbent for
∨ and neutral for ∧.

We show ⊥ is neutral for ∨ (> being neutral for ∧ is similar).
By η1 � η1 ∨ η2 we have η ∨ ⊥ � η.
By ⊥ � η, η ∨ ⊥ � η ∨ η which (as ∨ is idempotent) implies η ∨ ⊥ � η.
We now show > is absorbent for ∨:
By η1 � η1 ∨ η2, η ∨ > � >
By η � >, η ∨ > � >.

A.1.3 Normal Form (Lemma 6.3.3)

We only prove point 1 as point 2 is similar (note that the direction of the relation
is inversed because adding terms to a disjunction makes it weaker, while adding
terms to a conjunction makes it stronger).

Let {εi}i and {εj}j be sets of dependencies as in the Lemma statement. For
all j ∈ J , let ε′j = εi such that ε′j � εj . As � is a congruence relation we have∨

j∈J
ε′j �

∨
j∈J

εj (43)

By idempotence, multiple ε′j equal to the same εi can be replaced by a single
one, so we have ∨

i∈I0

εi ∼=
∨
j∈J

ε′j (44)

where I0 = {i ∈ I : ∃j ∈ J : ε′j = εi}. Applying the ε ∨ ε′ � ε rule we get∨
i∈I

εi �
∨
i∈I0

εi (45)

as I0 ⊆ I. Composing the three above relations we have the desired inequality.

A.1.4 Closure Uniqueness (Lemma 6.3.5)

We proceed in increasing generality, by first focusing on special cases. Let:

∆ =
∧
i∈I

γi/ εi (46)

where γi 6= γi′ for any distinct i and i′. We only consider points 1, 2 and 4 from
Definition 6.3.4 for the time being. The following definition allows to merge the
first two rules:

Notation A.1.6 (Alternative Operator) Let pk be a resource and ε a de-
pendency. Then pk ∗ ε is equal to pk ∨ ε if k = A, and to pk ∧ ε if k = R.

We write ∆\ α̃ to mean (
∧
i∈I:γi 6∈α̃ γi/εi)∧(

∧
α∈α̃ α/⊥), and ∆̂(γi) is ε̂i, γi’s

dependencies in ∆̂. The following definition can be used to construct a closure
explicitly:

66



Definition A.1.7 (∆-Closure) A ∆-closure of a statement Θ (typically cho-
sen equal to ∆) is a statement close(∆) (Θ) = Θ′ inductively constructed as
follows:

1. close(∆) (>)
def
= > and close(∆) (⊥)

def
= ⊥

2. close(∆) (γ/ ε)
def
= γ/ (close(∆\γ) (ε))

3. close(∆) (γ)
def
= γ ∗ close(∆\γ) (∆(ε)).

4. close(
∧
i∈I γi/εi)

(γ)
def
= γ if @i ∈ I : γi = γ.

5. close(∆) (∆1 ∧∆2)
def
= close(∆) (∆1) ∧ close(∆) (∆2).

It is easily seen by induction on the number of symbols appearing in the
representation of ∆ plus the number of statements in Θ that do not depend on
⊥, that the above procedure terminates after a finite number of steps.

We will now show that close(∆) (∆) = close (∆).

Let ∆̂ = close(∆) (∆). Then any ∆′ such that ∆̂ ↪→ ∆′ satisfies ∆̂ ∼= ∆′. In
other words, for all distinct j and k:

ε′k
def
= ε̂k{γj∗(ε̂j{

⊥/γk})/γj} ∼= ε̂k (47)

By construction, every γi appearing on the rhs of a / operator occurs as
γi ∗ close(∆\γ̃) (εi) where γ̃ is the set of all resources “wrapping” that statement
(including γi). Moreover, within a statement γi/ ε or γi ∗ ε, any γi appearing in
ε occurs as γi ∗ ⊥.

Assume w.l.o.g. that γj appears exactly once in ε̂k (if it never appears then
ε̂k = ε′k, and if it appears more than once, simply repeat the construction
below that many times). We write Ck[·] for the unique behavioural context (a
behavioural statement with one hole [·]) such that ε̂k = Ck[γj ∗ close(∆\γ̃) (εj)].
Applying the substitution in (47) we get

ε′k = Ck[γj ∗
(

close(∆\γ̃) (εj) , close(∆\{γj ,γk}) (εj)
)
] (48)

Now assume w.l.o.g. that there is exactly one γl ∈ γ̃ that appears in ε̂j , and
moreover that γl appears exactly once in ε̂j . (Again, if there’s more than one
occurence of a resource from γ̃ in ε̂j , then all of them can be individually trans-
formed as described below. If there’s none, close(∆\γ̃) (εj) = close(∆\γjγk) (εj),
and ε′k

∼= ε̂k follows from γ ∗ (ε, ε) being either γ ∨ ε ∨ ε or γ ∧ ε ∧ ε, that both
reduce to γ ∗ ε.) Let Cj[·] by the only behavioural context such that

ε̂j = Cj[γl ∗ close(∆\γ̃′) (εl)] (49)

for some γ̃′ with γj ∈ γ̃′.
The complete dependency chain obtained above can be seen in the following

diagram, where Ck[·] is the composition of the two arrows from γk to γj , and
Cj[·] is represented by the arrow going back from γj to γl.
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As γl ∈ γ̃, the context Ck[·] can uniquely be split into C0
k[·] and Cl[·] (corre-

sponding to the two horizontal arrows in the diagram) so that Ck[·] = C0
k[Cl[·]],

and close(∆\γ̃′) (εl) = Cl[γj ∗ ⊥] (note that γj ∈ γ̃′ implies γ̃′(γj) = ⊥).
Composing (47) and (49) we get

ε′k
∼= Ck[γj ∗

(
Cj[γl ∗ ⊥] , Cj[γl ∗ Cl[γj ∗ ⊥]]

)
]

Splitting Ck[·]:

ε′k
∼= C0

k[Cl[γj ∗
(
Cj[γl ∗ ⊥] , Cj[γl ∗ Cl[γj ∗ ⊥]]

)
]]

Applying the Nesting Elimination Lemma (A.1.1) with “Cl[γj ∗ [·]]” for C[·],
this becomes

ε′k
∼= C0

k[Cl[γj ∗
(
Cj[γl ∗ ⊥] , Cj[γl ∗ ⊥]

)
]]

By idempotence, and reuniting C0
k[C[·]] to Ck[·] we get ε′k

∼= Ck[γj ∗
(
Cj[γl ∗

⊥]
)
] = ε̂k, as required.
This completes the proof that ∆′ = close(∆) (∆) is a closure. We still need

to show that it is the only closure, i.e. any closure of ∆ is ∼=-equivalent to ∆′.
Let ∆ ↪→ ∆′′ be s.t. ∆′′ ↪→ ∆′′′ implies ∆′′ ∼= ∆′′′ for all ∆′′′.
By the definition of ↪→, ∆′′ can be obtained from ∆ by, a certain number of

times, replacing γi by γi ∗ εi. (Technically an individual application of a rule in
6.3.4 introduces some ε′i not necessarily equal to εi but as ε′i was itself obtained
from εi by applying similar transformations, this description is correct).

A resource occurrence γj in a statement is said “bare” if it is neither followed
by the ∗-operator nor contained in the ε of a statement γj ∗ ε.

A bare occurrences of a resource γj can be “completed” by applying Defini-
tion A.1.6 to replace all γj in the offending statement by γj ∗ (∆′′(γj){⊥/γk}).
Repeating this procedure as many times as required produces a statement ∆′′′

that has no bare resource occurrences, and that satisfies ∆′′ ↪→ ∆′′′. As ∆′′ was
assumed to be a closure, ∆′′ ∼= ∆′′′. Nested resource developments (γi ∗ ε where
ε contains γi ∗ ε′ for some ε′ can be reduced as shown above (replacing γi ∗ ε′
by γi ∗ ⊥), resulting in ∆′′′ ∼= close(∆) (∆), as required.

A.1.5 Composition of Disjoint Statements (Lemma 6.3.10)

According to Convention 6.2.2, Ξ and Ξ′ can be respectively written as Ξ ∧∧
i∈M pi

0 ∧
∧
i∈R piR/> and Ξ′ ∧

∧
i∈M ′ pi

0 ∧
∧
i∈R′ piR/>, where {pi}i∈M is

the set of ports that have a multiplicity specified in Ξ′, {pi}i∈R is the set of
ports whose responsiveness appear in Ξ′ on the lhs of a dependency “/ ” (and
the other way round for M ′ and R′).

In other words,

Ξ�Ξ′
def
= Ξr =

(
Ξ∧

∧
i∈M

pi
0∧
∧
i∈R

piR/>
)
�
(
Ξ′∧

∧
i∈M ′

pi
0∧

∧
i∈R′

piR/>
)
. (50)

From the Ξr written in (50) onwards, until the end of this proof, Convention
6.2.2 no longer applies, in particular Ξ�Ξ′ appearing in the development below
is not considered to have “hidden” resources.
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As � is a logical homomorphism,

Ξr ∼= (Ξ� Ξ′) ∧
(
(
∧
i∈M

pi
0 ∧

∧
i∈R

piR/>)� Ξ′
)
∧

(
Ξ� (

∧
i∈M ′

pi
0 ∧

∧
i∈R′

piR/>)
)
∧

(
(
∧
i∈M

pi
0 ∧

∧
i∈R

piR/>)� (
∧
i∈M ′

pi
0 ∧

∧
i∈R′

piR/>)
)

(51)

Similarly developing the Ξ � Ξ′ expression down to its individual terms
and applying point 5 of the Definition to all of them we obtain a behavioural
statement using only >, ∨ and ∧, i.e. Ξ � Ξ′ ∼= >. The same applies to the
fourth term: as Ξ and Ξ′ have no common resources and M , R, M ′ and R′

index resources in Ξ and Ξ′, we get (
∧
i∈M pi

0 ∧
∧
i∈R piR/ >) � (

∧
i∈M ′ pi

0 ∧∧
i∈R′ piR/>) ∼= >. We are left with(

(
∧
i∈M

pi
0 ∧

∧
i∈R

piR/>)� Ξ′
)
∧
(
Ξ� (

∧
i∈M ′

pi
0 ∧

∧
i∈R′

piR/>)
)
.

We concentrate on the left factor (the right one is similar). Let’s distribute∧
i∈M pi

0 ∧
∧
i∈R piR/> into Ξ′ using �’s logical homomorphism. We obtain a

behavioural statement equal to Ξ′ where every atomic statement pm or γ/ ε got
replaced by (

∧
i∈M pi

0∧
∧
i∈R piR/>)�pm or (

∧
i∈M pi

0∧
∧
i∈R piR/>)�(γ/ε),

respectively. In the first case, ∃i ∈M s.t. pi = p, so it is equal to∧
i∈M ; pi 6=p

(pi
0 � pm) ∧ (p0 � pm) ∧

∧
i∈R

(piR/>� pm)

i.e. (using point 1 of the Definition on the middle, and 5 for the rest)∧
i∈M ; pi 6=p

> ∧ p0+m ∧
∧
i∈R
> ∼= pm

In the second case, for a responsiveness statement, ∃i ∈ R s.t. γ = piR, so
it is equal to∧

i∈M
(pi

0 � (γ/ ε)) ∧
∧

i∈R; piR 6=γ

(piR/>� (γ/ ε)) ∧ (γ/>� (γ/ ε))

i.e. (using point 3 of the Definition on the right, and 5 for the rest)∧
i∈M
> ∧

∧
i∈R; piR 6=γ

> ∧ ((γ/>) ∧ (γ/ ε)) ∼= γ/ ε

Finally, for an activeness statement, noting that (
∧
i∈M pi

0∧
∧
i∈R piR/>) ∼=

(
∧
i∈M pi

0 ∧
∧
i∈R piR/>) ∧ > ∼= (

∧
i∈M pi

0 ∧
∧
i∈R piR/>) ∧ (γ/⊥):∧

i∈M
(pi

0 � (γ/ ε)) ∧
∧
i∈R

(piR/>� (γ/ ε)) ∧ (γ/⊥� (γ/ ε))

i.e. (using point 2 of the Definition on the right, and 5 for the rest)∧
i∈M
> ∧

∧
i∈R; piR 6=γ

> ∧ ((γ/⊥) ∨ (γ/ ε)) ∼= γ/ ε
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We conclude that (
∧
i∈M pi

0 ∧
∧
i∈R piR/ >) � Ξ′ ∼= Ξ′, and similarly Ξ �

(
∧
i∈M ′ pi

0 ∧
∧
i∈R′ piR/>) ∼= Ξ, so (51) becomes Ξr ∼= >∧Ξ′ ∧Ξ∧> ∼= Ξ∧Ξ′

and we’re done.

A.1.6 Composition Properties (Lemma 4.3.8)

The + operator on multiplicities is commutative as can be seen in Definition
4.3.3. It has a neutral element 0 as stated in the same definition, and is associa-
tive (one can easily see that a1 + (a2 + a3) is ? if two or more ai are non-zero,
and is ai if both aj with j 6= i are zero, so rotating the ai preserves the result).

The behavioural statement operators ∨ and ∧ are commutative up to ∼=
(Definition 6.3.1).

Commutativity of behavioural statement composition The ∆1�∆2
∼=

∆2�∆1 equivalence is proven by structural induction on ∆1 and ∆2. One of the
cases is: Assume Θi �∆2

∼= ∆2 �Θi for both i ∈ {1, 2}. Then (Θ1 ∧Θ2)�∆2

is ∼= to (� being a logical homomorphism) (Θ1 �∆2) ∧ (Θ2 �∆2) which is ∼=
to (by induction hypothesis) (∆2 � Θ1) ∧ (∆2 � Θ2), ∼= to (� being a logical
homomorphism) ∆2�(Θ1∧Θ2). Other “step” cases are similar. The base cases
enumerated in Definition 6.3.8 follow from +, ∧ and ∨ being commutative.

Associativity of behavioural statement composition ∆1� (∆2�∆3) ∼=
(∆1�∆2)�∆3) is again proven by structural induction on all three statements.
The step cases are much similar to the above, exploiting � being a logical
homomorphism and the distributivity rules of ∼= to decompose the product,
apply the induction hypothesis and recompose the resulting terms. For the
induction base case, assume all three ∆i are of the form pm and γ / ε. Note
that if they are not all dependency statements of the same resource γ, or all
multiplicities of the same port p, rule 4 of Definition 6.3.8 will apply and return>
no matter in which order the ∆i are composed. Otherwise, the three remaining
base cases corresponding to the first three points of Definition 6.3.8 satisfy
associativity as a consequence of +, ∨ and ∧ being associative up to ∼=.

As a corollary of Lemma 6.3.10, > is a neutral element of � when Convention
6.2.2 applies.

We may now lift the above results to prove the Lemma itself.

Proof of the Lemma By commutativity of ∧ and � on behavioural state-
ments,

(Σ1 ∧ Σ2 ; ΞL1 � ΞL2 J (ΞE1 \ ΞL2) ∧ (ΞE2 \ ΞL1)) ∼=
(Σ2 ∧ Σ1 ; ΞL2 � ΞL1 J (ΞE2 \ ΞL1) ∧ (ΞE1 \ ΞL2)) (52)

As closure and removal of non-observable dependencies commute with ∼=
(Lemma 5.1.3), � on process types is commutative.

(∅;> J >) is a neutral element: Let ∆ be any behavioural statement. Then
∆ \ > = ∆, and > \∆ = >, both consequences of point 4 in Definition 5.1.6.
Then:
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(Σ; ΞL J ΞE)� (∅;> J >) = (Σ ∧∅ ; ΞL �> J (ΞE \ >) ∧ (> \ ΞL))

= (Σ ∪∅; ΞL J ΞE ∧ >)
∼= (Σ; ΞL J ΞE)

Again, the remaining points of Definition 6.3.11 commute with ∼= so we are
done.

Regarding associativity, let Γi = (Σi; ΞLi J ΞEi) for i ∈ {1, 2, 3}, Γ = (Γ1 �
Γ2)� Γ3 and Γ′ = (Γ3 � Γ2)� Γ1. We show that Γ ∼= Γ′.

Let ΞL12 be close (ΞL1 � ΞL2) without resources not observable in ΞE1\ΞL2∧
ΞE2 \ ΞL1. Then Γ1 � Γ2 = (Σ1 ∧ Σ2; ΞL12 J ΞE1 \ ΞL2 ∧ ΞE2 \ ΞL1). The first
step (from Definition 6.3.11) for computing Γ is then

((Σ1 ∧ Σ2) ∧ Σ3; ΞL12 � ΞL3 J ΞE3 \ ΞL12 ∧ (ΞE1 \ ΞL2 ∧ ΞE2 \ ΞL1) \ ΞE3) .

The following property helps computing the environment component:

∀∆,∆1,∆2 :
(
∆1 ↪→ ∆2

)
⇒
(
∆ \∆1

∼= ∆ \∆2

)
(53)

We omit the proof but essentially, dependency reduction preserves the only
parts of ∆1 that matter when computing the subtraction ∆ \∆i. In particular,
ΞE3 \ ΞL12

∼= ΞE2 \ (ΞL1 � ΞL2).
Secondly,

∀∆1,∆2,∆3 : ∆1 \ (∆2 �∆2) ∼= (∆1 \∆2) \∆3

which is proved by “lifting up” the corresponding equality m1 − (m2 + m2) =
(m1 −m2)−m3 on multiplicities.

The environment component, as \ distributes over ∧ (Definition 5.1.6), is
therefore ∼=-equivalent to

ΞE3 \ (ΞL1 � ΞL2) ∧ ΞE1 \ (ΞL2 � ΞL3) ∧ ΞE2 \ (ΞL3 � ΞL1)

for which it is easy to see that swapping 3 and 1 indexes yields an equivalent
statement.

Step two for computing Γ is doing the closure of the local statement ΞL12 �
ΞL3. By closure uniqueness,

close (close (ΞL1 � ΞL2)� ΞL3) ∼= close (ΞL1 � ΞL2 � ΞL3)

in which, again, swapping 1 and 3 yields an equivalent statement.
As far as step three is concerned, dropping non-observable resources com-

mutes with statement equivalence so we are done.

A.2 Semantic Properties

A.2.1 Simple Correctness and Structural Equivalence (L. 4.4.2)

This lemma has two parts that can be proven independently:

1. simple correctness is preserved by structural congruence
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2. simple correctness is preserved by type equivalence

The proof of part 1 relies on two elementary properties of structural congru-

ence whose proof is omitted: ≡ is a strong bisimulation (Q ≡ P µ−−→ P ′ implies

∃Q′ : Q
µ−−→ Q′ ≡ P ′) and preserves the set of free names (P ≡ Q implies

fn(P ) = fn(Q)).
Let Γ |=# P and Q ≡ P . We show that Γ |=# Q as well. Point 1 of

Definition 4.4.1 is an immediate consequence of Γ |=# P and ≡ preserving the
set of free names.

Point 2 of Definition 4.4.1 is an immediate consequence of Γ |=# P and ≡
being a bisimulation, keeping for Q the same Γ+ that was used for P .

Point 3 of Definition 4.4.1 is done by inspecting a proof of ≡ being a bisim-
ulation: No application of (Rep) is ever added or removed when transforming

P
µ−−→ P ′ to Q

µ−−→ Q′. Concerning uniqueness of the µ transition: the set of
top-level guards, and whether their subject port is free is preserved by ≡.

We now proceed to part 2 of this proof (type equivalence preserves simple

correctness). Let (Γ;P )
µ̃−−→ (Γ′;P ′) be a transition sequence where Γ |=# P ,

and let Θ ∼= Γ. As the transition operator commutes with ∼=-equivalence, there

is (Θ;P )
µ̃−−→ (Θ′;P ′) with Θ′ ∼= Γ′.

Property 1 from Definition 4.4.1 is satisfied as the channel types in Γ′ and
Θ′ must be equal, by definition of ∼=.

For property number 2, there is a set of ports p̃ whose environment multi-
plicity got raised to ? in Γ+, and let Θ+ be equal to Θ′ but setting environment
multiplicities of p̃ to ?. Again, as ∼= commutes with o, keeping the same µ′ as
with Γ+, Θ+ o µ′ is well defined.

Property number 3 is satisfied because the multiplicity of a port is preserved
by type equivalence.

A.2.2 Bisimulation and Type Equivalence (Lemma 6.4.5)

Inspecting Definition 6.4.4, it is clear that Γ |= P is only concerned about
transition sequences available from P , and not about P ’s structure (beyond
the assumption that Γ |=# P but this is assumed in Lemma 6.4.5 as well).
Therefore, having P ∼ P ′, Γ |= P if and only if Γ |= P ′. We now focus on the
more interesting part of the lemma, that weakening preserves correctness.

Let Γ |= P , and let f be a strategy function satisfying the requirements of
Definition 6.4.4. Let Γ � Θ. We show that Θ |= P .

We use the following properties whose proofs are omitted:

1. Let Γ � Θ. If Γ o µ̃ = Γ′ then Γ′ � (Θ o µ̃).

2. For any statement Γ′ with Γ′ � Θ′, for any projection Γ′ ↘ Γ′′ there is a
projection Θ′ ↘ Θ′′ such that Γ′′ � Θ′′.

3. Let Γ′′ � Θ′′ be two elementary statements, and Γ′′ ∼=
∨
j∈J γj/ εj . Then

Θ′′ ∼=
∨
j∈J′ γj/ ε

′
j where J ⊆ J ′ and ∀j ∈ J : εj � ε′j .

There exists thus a tight matching8 between the transition network starting
from (Γ;P ) and the one from (Θ;P ), which permits translating f into a strategy

8Note that this matching need not be unique because an elementary statement can be
weakened to a non-elementary statement, as in α � α ∨ (β1 ∧ β2) which has two projections
α ∨ βi. However the proof works no matter which projection is chosen.
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function f ′ for Θ |= P : given a transition sequence from (Θ;P ) to (Θ′;P ′),
let (Γ′;P ′) be the endpoint of the corresponding sequence from (Γ;P ). By
construction, Then f ′(Θ′;P ′) is the typed process corresponding to f(Γ′;P ′).

Consider an infinite transition sequence, a strategy application set I, and
and indexing set JΘ (we put the Θ-annotation to make it clear which sequence

is being talked about) and as in the Definition but starting with (Θ;P )
µ̃q−−−→

(Θ0;P0). Using the above defined mapping there is a corresponding transition
sequence from (Γ;P ), which satisfies the requirements 2.1, 2.2 and 2.3 of the
Definition with the same I and µi, and (following property 3 above) with an
indexing set JΓ ⊆ JΘ. The properties γj are the same for the two sequences
but their dependencies satisfy

∀i ∈ N0, j ∈ JΓ : εΓ
j,i � εΘ

j,i (54)

As Γ |= P , there is j ∈ JΓ and (if 3.2 applies) i ∈ I satisfying 3.1, 3.2 and
3.3, using εΓ

j,i in place of εj,i.
The same j (and, if applicable, i) show that Θ |= P as well. For point 3.1,

(54) gives εΘ
j,i � εΓ

j,i � piA, so εΘ
j,i � piA as well. For point 3.2, if immediate

correctness of γj / ε
Γ
j,i relied on point 1 of Definition 6.4.1 then we must have

εΓ
j,i = ⊥, so by (54) εΘ

j,i = ⊥ as well, implying immediate correctness of γj/ε
Θ
j,i as

well. If immediate correctness of the former relied on point 6.4.1.2 then (noting
that the definition doesn’t refer to ε) it applies to the latter as well. Finally,
if point 3.3 of Definition 6.4.4 relied on point 6.4.1.3, the only occurrence of
ε = εΓ

j,i in that rule being on the rhs of a “�” relation, it remains true when

εΓ
j,i is replaced by the stronger εΘ

j,i.

A.3 Subject Reduction

In this section we prove Proposition 7.3.2.

We show that, if Γ ` P , (Γ;P )
µ−−→ (Γ′;P ′) and Γ0 ` P ′ then Γ0 � Γ′.

Following Lemma A.1.3 we first work on the branchings performed by the
transition, and them proceed with the proofs ignoring the (Sum) rule from the
LTS.

Let Γ ` G.P and Γ̂ ` G.P + Q, the latter being obtained from the former
using (R-Sum).

From (R-Sum), Γ̂ = (sub(G) + s)A / ε ∧ (Γ ∨ ΓQ), for some ε, s and ΓQ
depending on S. By Ξ1 ∨ Ξ2 � Ξ1, Γ̂ �

(∑
i∈I pi

)
A
/ ε ∧ Γ.

Then, (at least) one of the following statements is true:

• ε ∼= ⊥ (in which case Γ̂ � Γ), or

• the transition operator removes it.

We prove this in the beginning of the following subsections as the proof depends
on µ.

Secondly, all operators used in the transition operator are either logical ho-
momorphisms or (in the case of process type composition) commute with dis-
junction. So (Γ1 ∨ Γ2) o µ ∼= (Γ1 o µ)∨ (Γ2 o µ), and one can assume without loss
of generality that the process type being considered contains no disjunction.
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We will prove the lemma for τ -reductions, input transitions and output
transitions, in that order.

We first consider non-replicated prefixes and then show that if subject reduc-
tion holds when consuming non-replicated prefixes, it still holds with replicated
prefixes.

A.3.1 τ-Reductions

First assume µ = τ . Then, by Lemma A.1.4,

P ≡ (νz̃) (Q |
∑
i∈I

Gi.Pi |
∑
i′∈I′

Gi′ .Pi′), (55)

and there are a, ı̂ ∈ I and ı̂′ ∈ I ′ such that sub(Gı̂) = a and sub(Gı̂′) = ā.

Lemma A.3.1 (The Sums are not Active) Let Γ ` P with P as in (55).
Then Γ’s local behavioural statement does not contain (

∑
i∈I sub(Gi))A / ε

or (
∑
i′∈I′ sub(Gi′))A/ ε for ε 6∼= ⊥.

Proof Let

(Σ; ΞL J ΞE) `
∑
i∈I

Gi.Pi and (Σ′; Ξ′L J Ξ′E) `
∑
i′∈I′

Gi′ .Pi′

with
ΞE =

∨
j∈J

Ξj and Ξ′L =
∨
k∈K

Ξ′k

being normal forms of ΞE and Ξ′L. Then, assume ΞL contains (
∑
i∈I sub(Gi))A

(if it doesn’t, we’re done). By (R-Sum), ΞE must have no concurrent pi′ :

∀j ∈ J :
(
Ξj \ ā ∼= ⊥ or ∀i ∈ I \ {ı̂} : Ξj \ sub(Gi) ∼= ⊥

)
(56)

As sub(Gı̂′) = ā, there is m 6= 0 s.t. ām ` Gı̂′ .Pı̂′ , which gets carried over by
(R-Sum) to Ξ′L as

ām � Ξ′
k̂

(57)

for some k̂. Now, when applying (R-Par) to type
∑
i∈I Gi.Pi |

∑
i′∈I′ Gi′ .Pi′ ,

the environment component of the resulting type (see Definition 5.1.6) is:∨
j∈J Ξj∨
k∈K Ξ′k

=
∨

ρ:K→J

∧
k∈K

Ξρ(k)

Ξ′k

Pick an arbitrary ρ and let j = ρ(k̂). Then, by (56) and (57), either Ξj \Ξ′
k̂
∼= ⊥

(in case Ξj \ ā ∼= ⊥) or Ξj \Ξ′
k̂
� ā?∧

∧
i∈I\ı̂ sub(Gi)

0
(because Ξ\p = ⊥ iff p0 �

Ξ). All j in the first case drop from the disjunction over ρ. Using ∆ ∧∆′ � ∆,

we get ΞE \ Ξ′L � ā? ∧
∧
i∈I\{ı̂} sub(Gi)

0
. In other words,

(∑
i∈I sub(Gi)

)
A

is

not observable in (Σ; ΞL J ΞE) � (Σ′; Ξ′L J Ξ′E), and is dropped, by Definition
6.3.6, at step three of Definition 6.3.11.

It can be similarly shown that P ’s behavioural statement doesn’t contain
(
∑
i∈I′ sub(Gi))A/ ε

′ for ε′ 6∼= ⊥. 2

Removing the sums from (55) we get

(νz̃) (Q | Gı̂.Pı̂ | Gı̂′ .Pı̂′) (58)
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Lemma A.3.1 implies that (55)’s type is stronger than (58)’s, so it is now
enough to prove subject reduction for transitions not using (Sum).

We can pick Q = 0 and z̃ = ∅, as the general case is an immediate conse-
quence of Lemma A.1.5.

Let P = a〈x̃〉.O | a(ỹ).I, and consider the transition P
τ−−→ P ′ = O | I{x̃/̃y}.

We run the typing derivation on both P and P ′ and show that the former’s type
is a weakening of the latter’s.

Let ΓO ` O and ΓI ` I. The input’s type is (νỹ) Γ′I where, using (R-Pre),

Γ′I = a : σ � aA/ ε� aR/ (l̄ ∨ σ[ỹ])� σ̄[ỹ]/ (l ∨ āAR)� ΓI / (l ∨ āA) (59)

and the output is typed as

Γ′O = a : σ � āA/ ε′ � āR/ (l̄′ ∨ σ̄[x̃])� σ[x̃]/ (l′ ∨ aAR)� ΓO/ (l′ ∨ aA). (60)

Let’s first name a few important types and dependencies:
Let Γ = Γ′O � (νỹ) Γ′I be the pre-transition type and Γ′ = ΓO � ΓI{x̃/̃y} the

type obtained by re-typing the post-transition process.
We distinguish dependency statements in ΓI for resources based on param-

eters (ỹ) and others, and refer to them using two index sets, respectively Y and
O: the dependency statements in ΓI are∧

i∈Y
γi/ εi ∧

∧
i∈O

γi/ εi (61)

with ∀i ∈ Y : n(γi) ∈ ỹ and ∀i ∈ O : n(γi) 6∈ ỹ. We will also need to distinguish
between dependencies on parameter resources and other resources, so a depen-
dency εi is sometimes written in the following normal form (which, although
not unique, always exists):

∀i ∈ O ∪ Y : εi =
∨
j∈Ii

εOij ∧ εYij (62)

where n(εOij) ∩ ỹ = ∅ and n(εYij) ⊆ ỹ.
We similarly give names to dependencies allowed by the protocol. Just like

Y is an indexing set for resources to be provided by the input side, Y ′ is an
indexing set for output side resources (as a rule we use a tick ′ when refering to
output-related objects:)

σ[ỹ] =
∧
i∈Y

γi/ ε
P
i and σ̄[ỹ] =

∧
i′∈Y′

γi′ / ε
P
i′ (63)

Similarly for x̃ (that may have repeated names unlike ỹ):

σ[x̃] =
∧
i∈X

γi/ ε
P
i and σ̄[x̃] =

∧
i′∈X ′

γi′ / ε
P
i′ (64)

We need to subtract one from the local multiplicities from both a’s input and
output ports, which is permitted by the weakening relation (taken backwards
as we’re strengthening).

Secondly, activeness on a and ā needs to be dropped. As we work with
non-replicated prefixes, we can assume neither has ω multiplicity. Moreover
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they both clearly have a non-zero multiplicity, so that both are either 1 or ?.
If both are linear then they are no longer observable so that activeness drops
when applying the erasure operator. If both are plain then ε′ = ε = ⊥ so there’s
nothing to prove. If one is plain and the other is linear then only the plain one
will be declared active, but then when composing Γ′I and Γ′O it is no longer
observable, so, again, we get that neither a nor ā is active in Γ′.

Starting from (59) we drop the activeness dependencies and replace σ[ỹ] by
the corresponding resource set:

Γ′I � a : σ � aA/ ε� aR/

(
l̄ ∨
∧
i∈Y

γi

)
� σ̄[ỹ]/ (l ∨ āR)� ΓI (65)

Similarly to (61) we use assume the local component of (65) has the following
normal form: ∧

i∈Y
γi/ ε

′
i ∧

∧
i∈O

γi/ ε
′
i ∧ aR/ εI . (66)

The main difference between εi and ε′i is due to dependencies getting reduced
with σ̄[ỹ]. Their normal forms is similarly annotated with a tick ′ :

∀i ∈ O ∪ Y : ε′i =
∨
j∈I′i

ε′ij
O ∧ ε′ij

Y
(67)

where n(ε′ij
O

) ∩ ỹ = ∅ and n(ε′ij
Y

) ⊆ ỹ.
We may now compute a’s input responsiveness dependencies εI , by reducing

aR/ (l̄ ∨
∧
i∈Y γi) from (65) with statements in (67), dropping ỹ-based depen-

dencies and any other aR-dependency provided by ΓI :

εI � l̄ ∨
∧
i∈Y

∨
j∈I′i

ε′ij
O

(68)

Combining (66) and (67) we can compute the behavioural statement in
(νỹ) Γ′I :

(aR/ εI) ∧
∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧ ε′ij

∗

 (69)

where ε′ij
∗

is one of ⊥ (if pA � ε′ij
Y

for some p), l ∨ āR (for terms resulting of

the composition of ε′ij
Y

with the σ̄[ỹ]-term) or > (for ε′ij
Y ∼= >).

We now proceed to computing Γ’s local behavioural statement ΞL based on
(60) and (69):

ΞL = āA/ ε
′ � āR/ (l̄′ ∨ σ̄[x̃])� σ[x̃]/ (l′ ∨ aAR)� ΓO/ (l′ ∨ aA)�

aR/ εI ∧
∧
i∈O

γi/
∨
j∈I′i

(
ε′ij

O ∧ ε′ij
∗
)

(70)

Dropping dependencies on aA, replacing āR’s dependencies by the actual
resource set, replacing aR’s dependencies using (68), and developing σ[x̃] with
(63) we get the following (stronger) type:
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āR/

(
l̄′ ∨

∧
i∈X ′

γi

)
�

(∧
i∈X

γi/
(
εPi ∧ (l′ ∨ aR)

))
� ΓO�

aR/

l̄ ∨ ∧
i∈Y

∨
j∈I′i

ε′ij
O

 ∧ ∧
i∈O

γi/
∨
j∈I′i

(
ε′ij

O ∧ ε′ij
∗
)

The aR-dependency of the input instantiation term can be reduced with εI ,
the strong dependency replaced by a weak one, and then the aR-term can be
dropped, further strenghtening the type (replacing the i from aR’s dependencies
by ı̂ to avoid name clashes:)

āR/

(
l̄′ ∨

∧
i∈X ′

γi

)
�
∧
i∈X

γi/

εPi ∧
l′ ∨ l̄ ∨ ∧

ı̂∈Y

∨
j∈I′ı̂

ε′ı̂j
O

�
ΓO �

∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧ ε′ij

∗


The conjunction on ı̂ ∈ Y can be strengthened by keeping only the ı̂ = i

factor:

āR/

(
l̄′ ∨

∧
i∈X ′

γi

)
�
∧
i∈X

γi/

εPi ∧
l′ ∨ l̄ ∨ ∨

j∈I′i

ε′ij
O

�
ΓO �

∧
i∈O

γi/
∨
j∈I′i

(
ε′ij

O ∧ ε′ij
∗
)

We similarly expand the ε′ij
∗

factors. When ⊥ they can (by the ∀ε : ⊥ � ε

rule) be strengthened to ε′ij
Y {x̃/̃y}. Those equal to > occur precisely when

ε′ij
Y {x̃/̃y} ∼= > as well. Finally, ε′ij

∗
= l ∨ āR case can be reduced with the

āR/ (l̄′ ∨
∧
i∈X ′ γi)-term, resulting in l ∨ (āR ∧ (l̄′ ∨

∧
i∈X ′ γi)). That term can

be further strengthened into l ∨ l̄′ ∨ ε′ijY {x̃/̃y}, resulting in

∧
i∈X

γi/

εPi ∧
l′ ∨ l̄ ∨ ∨

j∈I′i

ε′ij
O

� ΓO�

∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧

(
l ∨ l̄′ ∨

(
ε′ij

Y {x̃/̃y}
)) (71)

We now show that dropping the event annotations from that expression
yields an equivalent type, building on the following lemma:
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Lemma A.3.2 (Event Elimination) Let {εi}i, {ϕi}i, {ε′j}j and {ϕ′j}j be
dependency sets not using the event l, and {γi}i, {γ′j}j two resource sets, where i
and j are assumed to cover some indexing sets I and J . If, for all i and j, either
εi � ε′j or ϕi � ϕ′j holds then

∧
i,j

(
γi/ (εi ∧ (l̄ ∨ ϕi)) ∧ γ′j/ ((l ∨ ε′j) ∧ ϕ′j)

) ∼=∧
i,j

(
γi/ (εi ∧ ϕi) ∧ γ′j/ (ε′j ∧ ϕ′j)

)
.

We omit the proof but it amounts to showing that, whenever a dependency
causes inclusion of any l ∨ ε′j in a l̄ ∨ ϕi (or vice versa), either dependencies in
ε′j are also included outside of the l ∨ . . . region, or the entire l ∨ ε′j becomes

∧-composed with ⊥, so that the l ∨ l̄ ∨ ε ∼= > rule becomes redundant, and
therefore the events can be omitted.

To remove event annotations from (71) we will show that ∀i′ ∈ X , i ∈ O, j ∈
I ′i, either of the following hold

εPi′ � ε′ij
Y

(72)∨
j′∈I′

i′

ε′i′j′
O � ε′ij

O
(73)

satisfying the conditions of the Lemma. Specifically, assume that (72) does not
hold. As neither dependency in the inequality use disjunctions, there is α such
that (for α′ = α{x̃/̃y}) α′ � ε′ij

X
,

α � ε′ij
Y
, (74)

α 6� εPi′ . (75)

Let k ∈ Y be such that γk = α (see (63)). By the definition of parameter
instantiation (if γi′ does not depend on α then α depends on γi′), (75) implies

γi′ � εPk . (76)

As ε′ij
Y

is taken from Γ′I which is assumed to be closed, we may apply

dependency reduction to it and preserve equivalence (i.e. replacing ε′ij
Y

with
the resulting dependency in (67) will give a type equivalent to Γ′I .)

Inequality (74) can also be written ε′ij
Y ∼= α ∧ ε′ij

Y
. Composing with the

σ̄[ỹ]/ (l∨ āR) term from (65), or more specifically γk/ (l∨ (āR∧ εPk )) (remember

that γk = α), it becomes (α ∗ (l ∨ āR) ∧ εPk ) ∧ ε′ij
Y

. Applying (76) rewritten as

εPk
∼= εPk ∧γi′ we get (α ∗ (l∨ āR)∧ εPk ∧γi′)∧ ε′ij

Y
. As i′ ∈ O we can apply (66)

and get (α ∗ (l ∨ āR) ∧ εPk ∧ (γi′ ∗ ε′i′)) ∧ ε′ij
Y

where the meaning of the second
∗ depends on what kind of resource γi′ is. Rewriting ε′i′ with (67) we getα ∗ (l ∨ āR) ∧ εPk ∧ (γi′ ∗

∨
j′∈I′

i′

ε′i′j′
O ∧ ε′i′j′

Y
)

 ∧ ε′ijY (77)

To summarise, ε′ij
Y

can be replaced by (77) in Γ′I (67), and the resulting
type is equivalent, so it can be used instead of Γ′I when computing (71).

Dependency (77) is strengthened by dropping l ∨ āR, εPk and all ε′i′j′
Y

,
and the two ∗ operators are handled like this: if they are conjunctions (for
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responsiveness resources) then the dependency is strengthened by dropping the
resource on their left, otherwise they are left as is and binding replaces the
dependency on their left by ⊥ so in both cases they drop, by ∀ε : ⊥ ∨ ε ∼= ε.
Then, when binding ỹ (69), (77) becomes

∨
j′∈I′

i′
ε′i′j′

O∧ε′ij
∗
. Written in normal

form (69), we replaced ε′ij
O

by ε′ij
O ∧

∨
j′∈I′

i′
ε′i′j′

O
, which is equivalent to say

that
∨
j′∈I′

i′
ε′i′j′

O � ε′ij
O

, which is precisely (73).

We can therefore apply Lemma A.3.2 to (71) twice (for l and then l′), getting

Γ �
∧
i∈X

γi/

∨
j∈I′i

ε′ij
O ∧ εPi

�ΓO �
∧
i∈O

γi/

∨
j∈I′i

ε′ij
O ∧

(
ε′ij

Y {x̃/̃y}
) (78)

The factors εPi can now be strengthened to ε′ij
Y {x̃/̃y} and, comparing with

(67), observe that the dependencies of γi for i ∈ X and O are exactly ε′i{x̃/̃y}:

Γ �
∧
i∈X

(γi/ ε
′
i) {x̃/̃y} � ΓO �

∧
i∈O

γi/
(
ε′i{x̃/̃y}

)
(79)

As substitution distributes on composition we get Γ � Γ′I{x̃/̃y}�ΓO. In order
to reach Γ′ we still need to transform Γ′I into ΓI , i.e. cancel the composition of
ΓI with σ̄[ỹ]/ āR.

Let γi/εi ∈ ΓI and consider a resource γi′ used in εi. Applying the parameter
instantiation (63) to it replaces it with γi′ ∗ (āR ∧ εPi′ ). If γi′ is a responsiveness
resource, this can be immediately strengthened back to γi′ . If it is an activeness
resource, then the āR/ σ̄[x̃] term from Γ′O can be applied to āR, strengthened
to keep only the γi′ resource, yielding γi′ ∨ (γi′ ∧ εPi′ ), which, by factoring γi′ ,
is equivalent to γi′ ∧ (> ∨ εPi′ ), itself equivalent to γi′ . Thus, all dependency
reduction due to the output instantiation can be cancelled as long as the output
responsiveness term is kept in the type and we get Γ � ΓO�ΓI{x̃/̃y}�σ̄[ỹ]/āR �
ΓO � ΓI{x̃/̃y} = Γ′, as desired.

A.3.2 Output

Let Γ ` P
a〈x̃〉
−−−−→ P ′. Following Lemma A.1.3 we first work on any branch-

ing (at most one in this case) performed by the transition, and them proceed
with the proofs ignoring the (Sum) rule from the LTS. We already dealt with
the disjunction introduced by (R-Sum), and if a branching consumed by the
transition is active in Γ ((

∑
i pi)A), then it is removed as specified by Definition

6.3.7. We can now proceed to the sum-less case.

Consider the transition P = a〈x̃〉.Q
a〈x̃〉
−−−−→ Q.

Assuming Γ ` Q, we get the following type for P (with ε ∈ {>,⊥} depend-
ing on a’s multiplicities):

Γ′ = a : σ � āA/ ε� āR/ (l̄ ∨ σ̄[x̃])� σ[x̃]/ (l ∨ aAR)� Γ/ (l ∨ aA) (80)

Having Γ′′ = Γ′ o a〈x̃〉, we want to show that Γ � Γ′′.
Recall that

Γ′′
def
= Γ′ o ā ⊗ σ̄[x̃]/ (āR J aR) (81)
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We first show that multiplicities in Γ′′ are equal or weaker than the ones in
Γ, before proceeding to the behavioural statement.

Simplifying (80) and (81) to only take into account the parts relevant for
multiplicities we get #Γ′′ = (ā � σ[x̃] � #Γ) o ā ⊗ σ[x̃]. By associativity and
commutativity of � and Lemma A.1.5,

#Γ′′ � (ā�#Γ) o ā (82)

Let a’s multiplicities in Γ be
(
ami ∧ āmo J am

′
i ∧ ām′

o

)
. Then in ā�Γ they

are (
ami ∧ āmo+1 J am

′
i ∧ ām

′
o−1
)

and in (ā� Γ) o ā they are(
ami ∧ ā(mo+1)−1 J am

′
i−1 ∧ ām

′
o−1
)
.

m′i − 1 ≤ m′i, m′o − 1 ≤ m′o and (by Lemma A.1.5), (mo + 1)− 1 � mo, so that

(ā� Γ) o ā � Γ (83)

Note that oā and \ā coincide in this case, as mo + 1 6= ω.
Composing (82) and (83) gives us #Γ′′ � #Γ, and we now proceed to the

behavioural statement.
We use the |∆| notation to express the set of resources used in a dependency:

|α| = α and |∆1 ∧∆2| = |∆1 ∨∆2| = |∆1| ∪ |∆2|.
Let Ω = |σ̄[x̃]| \ {āA, āR}, the set of resources to be provided by the output,

and T = (Ω ∪ |σ[x̃]|) \ {āA, āR} the set of resources to be provided on one side
or the other. In both cases we exclude āAR because they interact with the
statements introduced by the (R-Pre) rule and have to be handled specially.

We show that each dependency statement in Γ′′ is also present in Γ, in a
possibly weaker form.

Dependencies in Γ′′ are partitioned as follows:

1. {āA, āR}

2. Ω

3. T \ Ω

4. |Γ| \ ({āA, āR} ∪ T )

We cover each of those classes in order.
1. {āA, āR}
Output ā-activeness in Γ′ and Γ′′ may be provided by four different terms.

In the following a missing ā-activeness statement is written āA/⊥.

• āA/ ε as given by the (R-Pre) rule,

• āA/ εc ∈ Γ,

• āA/ εi ∈ σ[x̃],

• āA/ εo ∈ σ̄[x̃].

80



In (81), the Γ′ o ā type contains āA/⊥, by definition of that operator. The
⊗σ[x̃]-operation preserves that statement (as it may only weaken activeness
statements), so āA’s dependencies in Γ′′ are equal to those in σ̄[x̃] (after reducing
the āR-dependency), i.e. āA/ (ε′∧ εo) ∈ Γ′′ where ε′ is āR’s dependencies in Γ′′.

First assume εo ∼= ⊥. Then āA/ ⊥ ∈ Γ′′. The ∀ε : ε � ⊥ rule gives εc � ⊥
as required.

Now assume that εo 6∼= ⊥ but ε ∼= ⊥. The first case implies that āA ∈ |σ̄[x̃]|,
i.e. āR/ āA � Γ′, which reduces with āA/ ⊥ to give āR/ ⊥, i.e. ε′ ∼= ⊥, which
itself causes āA/⊥ ∈ Γ′′, and εc � ⊥ concludes the case once more.

Now assume both εo 6∼= ⊥ and ε 6∼= ⊥. Since Γ′ o ā is well-defined, m′i > 0.
Since āA ∈ |σ̄[x̃]|, Convention 6.2.4 applies to forbid the type to have blocked
activeness, i.e. there is ām ∈ σ[x̃] with m > 0. Because (R-Pre) introduces
that type into Γ′, mi > 0 as well. The sum of two non-zero multiplicities being
?,9 the side condition in (R-Pre) requires mo +m′o 6∈ {1; ?}. Since Γ′ includes
ā1
A/ε, mo > 1. This excludes mo+m′o = 0, leaving only mo+m′o = ω. Therefore

this only holds in the second form of the structural lemma.
For responsiveness, let āR/ ε0 ∈ Γ. Then ∃ε′ : āR/ ε

′ ∈ Γ′ and ε′ � ε0 (the
exact value is given in (85) below). Then let āR/ ε

′′ ∈ Γ′′. We have ε′′ � ε′ so
that ε′′ � ε0, as required.

2. Ω
We first calculate āR’s dependencies in Γ′.
Having ∀α ∈ Ω : α/εα ∈ Γ, fix a set of εαi and ε′αi and indexing sets Iα such

that:

εα ∼=
∨
i∈Iα

(εαi ∧ ε′αi) (84)

and |εαi| ∩ Ω = ∅, |ε′αi| ⊆ Ω for all α and i.
Let Φ be the set of functions ϕ such that dom(ϕ) = Ω and ∀α ∈ Ω, ϕ(α) ∈ Iα.

We say that such a function is at a circularity if σ[x̃]�
∧
α∈Ω(εαϕ(α)) contains

α/⊥ for some α ∈ Ω.
Define εϕ to be ⊥ if ϕ(Ω) is at a circularity, > otherwise. Having āR/ε0 ∈ Γ

(or ε0 = > if there is no such statement), āR/ ε
′ ∈ Γ′, with:

ε′ ∼= ε0 ∧
∨
ϕ∈Φ

(
εϕ ∧

∧
α∈Ω

ε′αϕ(α)

)
(85)

Finally, having σ̄[x̃] =
(
x̃ : σ̃; ũL ∧ δ̃L J ũE ∧ δ̃E

)
, let ∀α ∈ Ω : α/ εα0 ∈ δ̃L.

Then, ∀α ∈ Ω : α/ ε′′α ∈ Γ′′, with

ε′′α �
∨
ϕ∈Φ

(
εα0 ∧ εϕ ∧

∧
α′∈Ω

ε′α′ϕ(α′)

)
(86)

That equation gives a stronger form of ε′′α where we removed ε0 from (85)
as well as statements for resources α contained in |σ[x̃]| ∩ |σ̄[x̃]|, produced by
σ[x̃] in Γ′. Note that those statements may only be responsiveness statements

9This is a crucial requirement of the proof — if there were two non-zero multiplicities m1

and m2 such that m1 + m2 6= ? then a channel type with 1m1 and 1̄A in ξO and 1m2 in ξI
would not have blocked activeness but subject reduction would not hold for transitions like

a〈a〉
a〈a〉
−−−−→ 0.
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by Convention 6.2.4, and will therefore be added to εα using the ∧ operator, so
that they may be dropped by applying the ∀ε1ε2 : ε1 ∧ ε2 � ε1 rule.

The following lemma says that if āR’s dependencies isn’t ⊥ then all depen-
dencies of local resources on remote resources in Γ are contained in the protocol
(to be precise, by parameter instantiation of local resources, which includes
dependencies added to complete the protocol).

Lemma A.3.3 (Protocol Satisfaction) Let Ω, Φ, εαi and ε′αi be defined as
before (for all α ∈ Ω and i ∈ {0} ∪ Iα), and ϕ ∈ Φ be a function that is not at
a circularity.

Then, for all α, εαϕ(α) � εα0.

Proof εαϕ(α)
∼= β̃s ∧ β̃w with β̃s ⊆ β̃w and similarly let εα0

∼= (β̃′s <) ∧ (β̃′w ≤)

with β̃′s ⊆ β̃′w.
We show by contradiction that

β̃s ⊆ β̃′s ∧ β̃w ⊆ β̃′w. (87)

Let β ∈ β̃s \ β̃′s. Because β 6∈ β̃′s, β/ α � σ[x̃], which, when composed with
α/ εαϕ(α), yields α/⊥, contradicting ϕ not being at a circularity.

Now let β ∈ β̃w \ β̃′w. Similarly to the other case we obtain that β/α � σ[x̃],
which, again produces α/⊥, a contradiction.

Applying ∀ε1, ε2 : ε1 � ε1 ∧ ε2 on (87) yields (β̃s <) � (β̃′s <) and (β̃w ≤) �
(β̃′w ≤), and therefore εαϕ(α) � εα0. 2

We claim that (86) is weaker than α/ εα which is in Γ:
First, for all ϕ ∈ Φ and α ∈ Ω, taking i = ϕ(α), εαi � εα0 ∧ εϕ: If ϕ is at

a circularity then the inequality is an immediate consequence of ∀ε : ε � ⊥. if
ϕ is not at a circularity then εϕ = > and the inequality is proved in Lemma
A.3.3.

Second,
∧
α′∈Ω εα′ϕ(α′) � εαi, as a direct application of the ε1 ∧ ε2 � ε1 rule

(as ϕ(α) = i).
3. T \ (āAR ∪ Ω)
Let α ∈ T (and not in āAR ∪Ω), with α/ εα ∈ Γ, ε′α ∈ σ[x̃]. Then εα ∧ ε′α ∈

Γ′, with an additional aAR-dependency if l 6∈ l̃. Then, by definition of the
“⊗(σ[x̃]/ (l ∨ āAR))” operation, ∃α′′/ ε s.t. ε′′α ∈ Γ′′ and ε′′α � εα.

4. |Γ| \ ({āA, āR} ∪ T )
Those resources have, in both Γ′ and Γ′′ and compared to Γ, just one aA

additional dependency which can be removed by strengthening.

A.3.3 Input

Let (Γ′;P ′)
a(x̃)
−−−−→ (Γ′′;P ′′), where P ′ = a(ỹ).P and Γ′ ` P ′.

Then the type system types P0 = P ′ | a〈x̃〉 with a type Γ0 equal to Γ′′ but
with an additional aA-dependency on σ[x̃], that can be removed by strengthen-

ing (i.e. Γ0 � Γ′′). As P0
τ−−→ P ′′, Γ′′ we can apply the τ -case of subject reduc-

tion (proved in Section A.3.1), and have Γ′0 ` P ′′ for some Γ′0 with Γ′0 � Γ0.
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A.3.4 Replication

Let P ≡ (!G).P0 | Q and consider a transition P
µ−−→ P ′ ≡ P | P0{x̃/̃y} (so

µ 6= τ , but the transformation given below can straightforwardly be extended to
transitions involving two guarded prefixes, for the µ = τ -case). For readability
purposes we omitted a restriction “νã” before P that would be needed for full
generality, but the proof is the same.

Let sub(G) = sub(µ) = p, obj(G) = ỹ and obj(µ) = x̃ (they may be different
in case G is an input).

Following the type system rule (R-Pre), P ’s type Γ is as follows:

Γ =
(
p : σ; pωA J pm ∧ p̄m

′
)
� ! (νz̃)

(
pR/σ[ỹ]�σ[ỹ]/ p̄AR�Γ0/ p̄A

)
�ΓQ (88)

where Γ0 ` P0 and ΓQ ` Q.
The proof involves extracting one element of the replicated process (as if

we invoked the usual rule !P 7→ (P | !P ), which, remember, is not part of out
notion of structural congruence because a port with multiplicity ω should not
appear more than once in a process).

Let P̂ = Ĝ.P0 | (!G).P0 | Q where Ĝ is G but with sub(Ĝ) = q instead of p,
for some fresh port q (input if p is an input and output if p is an output). Note
that we keep obj(Ĝ) = obj(G) so if for instance G = a〈a〉 then we set Ĝ = b〈a〉
for some fresh b, not “b〈b〉”.

Observe that P̂
µ̂−−→ P ′ (where, again, µ̂ is such that µ̂{sub(G)/t} = µ and

obj(µ̂) = obj(µ)). Similarly to (88), P̂ has type Γ̂:

Γ̂ =
(
q : σ; q1 J

)
� (νz̃)

(
qR/ σ[ỹ]� σ[ỹ]/ q̄AR � Γ0/ q̄A

)
�(

p : σ; pωA J pm ∧ p̄m
′−1
)
� ! (νz̃)

(
pR/ σ[ỹ]� σ[ỹ]/ p̄AR � Γ0/ p̄A

)
� ΓQ

(89)

Observe that we set p̄’s remote multiplicities to m′ − 1 rather than just m′ like
in (88), as our goal is to have Γ oµ and Γ̂ oµ̂ be as close as possible so that subject
reduction with non-replicated guards on the latter can be used to describe the
former. We still have Γ̂ ` P̂ as (R-Pre) doesn’t put any restriction on remote
multiplicities of the complement.

Define a set of Γi and Γ̂i such that:

σ[ỹ]/ p̄AR � Γ0/ p̄A =
∨
i∈I

Γi (90)

σ[ỹ]/ q̄AR � Γ0/ q̄A =
∨
i∈I

Γ̂i (91)

As q is fresh, n(q) doesn’t appear in Γ0 or σ[ỹ] and

∀i ∈ I : Γ̂i{n(p)/n(q)} = Γi (92)

As � and νz̃ are logical homomorphisms, the q-part from (89) under z̃-
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replication is:

(νz̃)
(
qR/ σ[ỹ]� σ[ỹ]/ q̄AR � Γ0/ q̄A

)
= (νz̃)

∨
i∈I

(
qR/ σ[ỹ]� Γ̂i

)
=
∨
i∈I

(νz̃)
(
qR/ σ[ỹ]� Γ̂i

)
∼=
∨
i∈I

(
qR/ ε̂i ∧ (νz̃) Γ̂i

)
(93)

for some collection of ε̂i (which are σ[ỹ] “transformed” according to Γ̂i by the
reduction itself performed by �). Similarly,

(νz̃)
(
pR/ σ[ỹ]� σ[ỹ]/ p̄AR � Γ0/ p̄A

) ∼= ∨
i∈I

(
pR/ εi ∧ (νz̃) Γi

)
for some set of εi. Replicating that type gives:

! (νz̃)
(
pR/ σ[ỹ]� σ[ỹ]/ p̄AR � Γ0/ p̄A

) ∼= ∨
J⊆I

⊙
j∈J

(
pR/ εj � (νz̃) Γ2

j

)
(94)

We are now ready to compute Γ o µ and Γ̂ o µ̂. Since the definition of o
(Definition 6.3.12, page 37) is slightly different for inputs and outputs in the
polarity of the composition operator (� for inputs and ⊗ for outputs) and of the
parameter instantiation (σ[x̃] for inputs and σ[x̃] for outputs) we now assume
µ is an output. The proof for inputs is identical, with the two above changes
applied everywhere.

Using (Γ� Γ′) o p � (Γ o p)� Γ′ and (94):

Γ o µ �

(p : σ; pωA J pm ∧ p̄m
′−1
)
�
∨
J⊆I

⊙
j∈J

(
pR/ εj ∧ (νz̃) Γ2

j

)⊗ σ[x̃]/ pR

(95)
Noting that ∨ is idempotent (so counting one item more than once is not a
problem) we have the following equality:∨

J⊆I

∆J
∼=
∨
i∈I

∨
J⊆I
J3i

∆J

Moreover, pR/ ε1 � pR/ ε2 � pR/ ε1, so, in (95), we may move pR/ εj outside
the composition:

Γ oµ �

(p : σ; pωA J pm ∧ p̄m
′−1
)
�
∨
i∈I

(
pR/ εi ∧

∨
J⊆I
J3i

⊙
j∈J

(νz̃) Γ2
j

)⊗σ[x̃]/pR

(96)
Moving on to Γ̂ and Γ̂ o µ̂:

Γ̂ o µ̂ �

(p : σ; pωA J pm ∧ p̄m
′−1
)
�
∨
J⊆I

⊙
j∈J

(
pR/ εj ∧ (νz̃) Γ2

j

)
�
(
q : σ; q0 J

)
�
∨
i∈I

(
qR/ ε̂i ∧ (νz̃) Γ̂i

))
⊗ σ[x̃]/ qR (97)
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The
(
q : σ; q0 J

)
factor is neutral for � (it is ∼=-equivalent to >) so we may

drop it. We have ∀i : ε̂i � εi as the latter may have “captured” responsiveness
of additional p-prefixes found in Γ0 (the continuation). As / is contravariant
on the right wrt. � (Definition 6.3.1, page 33), ∀i : qR / ε̂i � qR / εi, so (97)
becomes

Γ̂ o µ̂ �

(p : σ; pωA J pm ∧ p̄m
′−1
)
�
∨
J⊆I

⊙
j∈J

(
pR/ εj ∧ (νz̃) Γ2

j

)
�
∨
i∈I

(
qR/ εi ∧ (νz̃) Γ̂i

))
⊗ σ[x̃]/ qR (98)

Let’s call that type ΓM (“M” as it is in some sense “in the Middle” between
Γ o µ and Γ̂ o µ̂). Inequality (98) can then be written ΓM � Γ̂ o µ̂, or

ΓM{n(q)/n(p)} � Γ̂ o µ̂{n(q)/n(p)} (99)

Applying (92) and the definition of replication (Γ� ! Γ = ! Γ), (96) becomes

Γ o µ � ΓM{n(q)/n(p)} (100)

We have already shown subject reduction for transitions using non-replicated
guards, so there is Γ′ such that Γ̂′ o µ̂ � Γ′ and Γ′ ` P ′. The first equation
implies

Γ̂′ o µ̂{n(q)/n(p)} � Γ′{n(q)/n(p)} (101)

As n(q) doesn’t appear in P ′, it doesn’t appear in Γ′ either so

Γ′{n(p)/n(q)} = Γ′ (102)

Chaining (100), (99), (101) and (102) we get Γ o µ � Γ′, as required.

A.4 Simple Correctness

As a pre-requisite to soundness we show the following lemma:

Lemma A.4.1 (Simple Correctness) Let Γ ` P . Then Γ |=# P .

The following auxiliary lemma says that operators used by the type system
may only increase or preserve local multiplicities:

Lemma A.4.2 Let Γ = (Σ; ΞL J ΞE) and Γ′ be process types and let pm � ΞL.

• If Γ � Γ′ is well defined and equal to some (Σ′; Ξ′L J ΞE) then ∃m′ ≥ m

s.t. pm
′ � Ξ′L.

• If (νa) Γ is equal to some (Σ′; Ξ′L J ΞE), with a 6= n(p) then pm � Ξ′L.

We omit the proof, which is an easy consequence of properties of the +
operator on multiplicities.

The following lemma is used when proving that the type system guarantees
uniformity of ω-names:
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Lemma A.4.3 Let (Σ; ΞL J ΞE) ` P with pω � ΞL. Then p appears at most
once in P in subject position, and, in case that occurs, P = C[!T.Q] where T ’s
subject is p and C doesn’t bind n(p).

Proof The type system performs the following operations on local multiplic-
ities:

1. Prefix rules add 1 or ω for prefix subjects

2. Prefix rules �-compose the remote behaviour (for objects)

Therefore pω is produced by the type system whenever p is the subject of
a replicated prefix ! (νz̃) a(ỹ).P ′ or ! (νz̃) a〈x̃〉.P ′ (point 1), and when it is a
free parameter of an output (point 2, with the appropriate ω multiplicity in the
channel type).

More than one occurence of a port would result in composition of two non-
zero multiplicities and give p?, so exactly one of the above cases must occur.

Then, a local pω channel usage is preserved by composition (only with types
having p0 on the local side), prefixing (only with ports other than p) and binding
(only of names other than n(p)). 2

We work on a restricted form of simple correctness that does not permit
arbitrary transition sequences:

Definition A.4.4 (Simple Correctness Predicate) A typed process (Γ;P )
is said locally correct with respect to simple semantics (written good#(Γ;P )) if
it satisfies Definition 4.4.1 whenever µ̃ = ∅.

Then this lemma, together with Subject Reduction, will be used for full
generality:

Lemma A.4.5 (Weakening Preserves Local Correctness)
Let (Γ;P ) be a typed process with good#(Γ;P ), and Γ′ � Γ. Then good#(Γ′;P ′)
also holds.

Lemma A.4.6 (Local Correctness Lemma) If Γ ` P then good#(Γ;P ).

Proof
Let Γ ` P , with Γ = (Σ; ΞL J ΞE). The items below corresponds to those

in Definition 4.4.1.

1. is easily shown by induction on the length of the typing derivation.

2. Let P
µ−−→ P ′. We distinguish the cases µ = τ and µ 6= τ :

(a) sub(µ) = p. By Lemma A.1.4, P ≡ P ′ = (νz̃) (G.Q |R) (modulo
replication, and with n(p) 6∈ z̃). By subject congruence, Γ`P ′.
Let ΓQ ` Q, ΓR ` R and obj(G) = x̃. Then, typing P ′ uses (R-
Pre), (R-Par) and (R-Res), resulting in

Γ = (νz̃) ((νbn(G)) (
(
p : σ; J pm0 ∧ p̄m

′
0

)
� p#(G)

A / ε�

pR/ (l̄ ∨ σ[x̃])� σ̄[x̃]/ (l ∨ p̄AR)� ΓQ/ (l ∨ p̄A)))� ΓR (103)
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In (103), m0 must be equal to #(G) or ? in order for the first com-
position to be well-defined, so, by Lemma A.4.2, pm � ΞL for some
m 6= 0.

Let Γ+ = (Σ; ΞL J ΞE � p̄?), making Γ+ op well-defined. Set µ′ equal
to µ but with fresh and distinct bound objects z̃′. As z̃′ ∩ dom(Σ) =
∅, Γ+ o p� σ[obj(µ′)] is also well-defined.

(b) µ = τ . Let Γ+ = Γ. Then Γ+ o τ = Γ+ immediately implies

(Γ+;P )
τ−−→ (Γ+;P ′).

3. Let P
µ−−→ P ′ be a transition whose subject port is p with pω � ΞL.

Applying Lemma A.4.3, P contains at most one prefix having p in subject
position, and if there is one it is replicated. By Lemma A.1.4, there is
at least one prefix having p in subject position. So we conclude P ≡
(νz̃) (! (νz̃′)Q |R) with R = a(ỹ).R′ (for p = a) or R = a〈x̃〉.R′ (for

p = ā). The ∃!Q s.t. P
µ−−→ Q condition is then immediately satisfied as

µ must use that prefix, with the objects given by µ.

2

The simple correctness lemma is now simply proven composing the above
lemmas:

Let Γ ` P and (Γ;P )
µ̃−−→ (Γ′;P ′).

By the Subject Reduction Proposition, there is Γ′′ such that Γ′′ ` P ′ and
Γ′′ � Γ′. By the Local Correctness Lemma, good#(Γ′′;P ′). By Lemma A.4.5,
good#(Γ′;P ′) as well. Since this is valid for any transition sequence µ̃, Γ |=# P .

A.5 Soundness

In this section we prove the soundness lemma, i.e. that Γ ` P implies Γ |= P .
In the previous section we showed that (Γ;P ) is correct with respect to

simple semantics. We now proceed with the rest of the semantic definition.
Before proceeding to the proof itself we construct a framework that lets us

unambiguously address individual channels, taking into account that in pro-
cesses such as ! a.(νt)P there are potentially infinitely many distinct instances
of t, as the process is replicated. Secondly, that framework permits addressing
individual occurrences of channel names throughout the evolution of a pro-
cess. Thirdly we introduce a compact notation (called activeness strategy) for
transition sequences expressed up to certain permutation/deletion of unrelated
transitions.

The proof is then merely a matter of constructing such activeness strategies
in the typing rules and verifying they satisfy certain consistency criteria.

Specifically (the numbers in bracket are Definition numbers):

1. Extended process syntax (Section A.5.1): The process syntax is extended
to incorporate events l (see Section 7.1), so that the connection between
events in dependencies and the corresponding prefix in the process is main-
tained. This will also permit giving a precise semantics to dependencies
such as l̄ ∨ ε and l ∨ ε. An annotated form (A.5.2) P ′ of a process P is
one that uses that extended syntax, and removing the annotation is done
using the operator ran(P ′) = P (A.5.1).
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2. Strategies in Process Types (Section A.5.2): In order to keep track of how
dependency statements were obtained we annotate dependency statements
γ/ ε with activeness strategies ρ (A.5.4) and responsiveness strategies φ
(A.5.8) that indicates which events must be triggered (and how) for a
resource to become available. Annotated activeness statements are then
of the form pA / ε : ρ and annotated responsiveness statements are of the
form pR / ε : ρ. φ where ρ and φ respectively describe a p-prefix and the
corresponding continuation.

A strategy ρ is essentially a binary tree whose nodes are individual events,
and siblings are communication partners. This makes it easy to gradually
modify a strategy when components of a process are pieced together and
when dependencies are reduced. Is is also easy to translate an activeness
strategy into an actual transition sequence. Again, removing the strategy
annotations is done by the ran(Γ′) operator (A.5.11).

3. Consistency Criteria (Section A.5.3): We propose consistency criteria
(A.5.13 and A.5.16) on annotated process types to guarantee that active-
ness strategies can actually (in the absence of interference) be translated
to sequences of transitions in the process, and that the resources required
by those sequences (A.5.14 and A.5.15) do not exceed the dependencies
declared in the process type.

4. Interference and Completeness (Section A.5.4)

In a particular run a process makes a number of choices, for instance by
selecting a particular communication partner for a non-replicated guard.
We represent individual choices with activeness strategies, called selection
strategies. Noting that two choices can be incompatible or contradictory
(A.5.19) if they can’t both be made in a single process run, a set of choices
ρ̃c made in a particular run of the process is called a choice set (A.5.20).

Similarly, an activeness strategy is either compatible or contradicts a given
choice set. For a typing Γ |= P to be semantically correct it needs to be
prepared to face arbitrary interference (in the form of µ̃i-transitions with
i 6∈ I in Definition 6.4.4), in other words Γ must be complete (A.5.21):
Γ ∼=

∨
j∈J Γj where for any possible choice set ρ̃c there is j ∈ J such that

Γj does not use any strategy contradicting ρ̃c.

5. Annotated transition system (Section A.5.5): In order to prove that con-
sistency and completeness form a sound characterisation of Γ |= P , the
labelled transition system is extended (A.5.24) to update annotations in
the process as well as strategies in the type while preserving consistency
and completeness.

6. Annotated type system (Section A.5.6): We augment the type system from
Section 6.5, so Γ `′ P (A.5.42) extracts event names from an anno-
tated process rather than picking new ones, and constructs annotated
behavioural statements.

The soundness proof is based on a number of lemmas highlighting properties
of the above setting:
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1. Type system equivalence (A.5.43): If a (Γ;P ) is accepted by the original
type system then there is an annotated typed process (Γ′;P ′) such that
Γ′ `′ P ′ and ran(Γ′;P ′) = (Γ;P ).

2. Soundness of the Annotated Type System (A.5.44) says that the annotated
type system produces types that are consistent and complete.

Some intermediary types are not complete (the �-factors of the (R-Pre)
and (R-Par) rules), but their closure is, motivating the pre-completeness
property (Definition A.5.40), that is satisfied by those factors. Lemma
A.5.41 shows that the closure of a pre-complete type is complete.

3. Completeness and Correctness Lemma (A.5.31) shows that if an annotated
typed process (Γ;P ) is consistent and complete then Γ |= P (restricted
to the case where, in Definition 6.4.4, µ̃q = ∅). It builds on the following
two lemmas:

4. Strategy Application Lemma (Lemma A.5.30) provides a definition to the
strategy f in Definition 6.4.4. It also deals with the liveness requirement
(“∃i ∈ I” in Definition 6.4.4) by showing that the application of a strategy
cause some form of progress towards reaching a resource, the progress
being measured by decreasing weight of strategies.

5. Runnability Safety Lemma (Lemma A.5.29) deals with the robustness re-
quirement (the {µi}i 6∈I in Definition 6.4.4) by showing that transitions
preserve consistency and completeness of annotated process types.

A.5.1 Events in Processes

In order to keep track of the relation between behavioural statements and parts
of process types we make two changes to processes, to enforce a certain structure
making its analysis easier (without loss of generality, as every process is struc-
turally congruent to a process of that form), and adding the dependency events
mentioned in Section 7.1 into the process syntax. Specifically, an annotated
process is any production from P in the grammar below.

P ::= (νx)P
∣∣ Ppar

Ppar ::= (Ppar |Ppar)
∣∣ Psum

∣∣ 0

Psum ::= (Psum +Psum)
∣∣ Gl.P

G ::= !Gnorep

∣∣ Gnorep

Gnorep ::= (νx)Gnorep

∣∣ a〈x̃〉
∣∣ a(ỹ)

Extended event: l ::= l. l
∣∣ • . l

∣∣ l

Extended name: a, x, y ::= l. x
∣∣ • . l

∣∣ x
Extended names are used to distinguish between different private channels

with the same name. for instance, using the standard π-calculus transition
rules (ignoring the l-annotations), a τ -transition on a in ! al.(νn)P | āl′ would
result in the process ! al.(νn)P | (νn)P , that has two distinct channels with
the same name n. Using extended names we can write the resulting process
! al.(νn)P | (νl′. n)P ′, where the extended name l′. n gives information on how
that binding was brought to top-level. An “extended event” similarly records
what has happened to a given event annotation in the past.

Extended names and events are constructed by the labelled transition system
on annotated processes (see page 100 and following). Up to that point the reader
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may assume that all x and l encountered are simple names and events “x” and
“l”.

In general we use the same letters P , Q, etc for both annotated processes
and processes, and specify if a name corresponds to an annotated process in
case of ambiguity.

Definition A.5.1 (Annotation Removal — Processes) Let Q′ be an an-
notated process. Removing the event annotations (written ran(Q′)) is done by
repeatedly replacing every instance of Gl.P , and every extended name l. x of the
Psum and x rules in the grammar above by just G.P (respectively, x).

We will use the Barendregt convention on bound names as we will need to
individually address bound channels by name:

Definition A.5.2 (Annotated Form) Let Q be a process. An annotated
form of Q is any annotated process Q′ not using the same event more than
once and such that all bound names are distinct from each other and from free
names, such that ran(Q′) =α Q.

Example A.5.3 An annotated form of the process P = (νa) (a(x).x̄ | a〈b〉) is

P ′ = (νa) (a(x)
l1 .x̄l2 | a〈b〉l3), and ran(P ′) = P .

It is easy to see that every process has at least one annotated form obtained
by α-renaming bound names and for instance numbering all guards from left to
right.

A.5.2 Strategies and Annotated Process Types

We modify the process types so that in some sense they contain the proof of
their validity, by attaching strategies to every activeness dependency statement.

Formally:

Definition A.5.4 (Activeness Strategy) Strategies are produced by the fol-
lowing grammar:

ρ ::= π̃ (π̃)δ
∣∣ πδ

∣∣ s

s ::= s+l
∣∣ l

δ ::= . ρ
∣∣ [ s ]

π ::= (l|ρ)
∣∣ (l|ρ]

∣∣ (l|•)
∣∣ (ρ|•]

∣∣ (•|ρ)

π̃ ::= π. π̃
∣∣ π

An annotated activeness dependency is an expression of the form

sA / ε : ρ,

read “Strategy ρ provides an s-prefix and depends on ε”.

Strategies refer to individual guards G by the unique event l they are at-
tached to. And inversely statements such as “l1 is at top-level” or “l1 is

l2’s guard” refer to the attached guard, as in process a(y)
l1 .b〈y〉l2 . A sum

G1
l1 .Q1 +G2

l2 .Q2 is referred to by l1+l2. Formally:
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Definition A.5.5 (Top-Level and Guards) A sum s =
∑
i∈I li is at top-

level in a process P if P ≡ (νz̃) (
∑
j∈J Gj

lj .Qj | R) where {li}i∈I = {lj}j∈J .

An event l guards a sum s in a process P if P = C[Gl.Q] where s is at
top-level in Q.

A sequence π1. π2. · · · . πn. l (abbreviated π̃. l) indicates how to bring a guard
l to top-level. An individual step πi = (li|ρi) tells to bring event li to top-level,
using ρi to find a communication partner (ρi = • means the communication
partner is to be found in the environment, i.e. li should be brought to top-level
with a labelled transition rather than a τ). In that sequence, l1 must be at top-
level in the process, and li must be li+1’s guard (This is enforced by runnability,
cf. Definition A.5.13). In such a sequence, a step l can only appear at the end
as it represents successful termination of a strategy, so l. ρ is not a meaningful
strategy.

The step (l|ρ) in (l|ρ). ρ′ is said doubly-anchored (round bracket), meaning
that both l and ρ must be accurately followed in order for that step to be suc-
cessful. In contrast a singly-anchored step is written (l|ρ]. ρ′ (square bracket)
where the step is successful as soon as l is consumed, even if not by commu-
nicating with ρ (note that the left bracket is still round, to emphasise the fact
that l must be accurately followed, unlike ρ). Consider the process

P = a(y)
la .(s̄ls̄ | ȳlȳ .t̄lt̄) | a〈b〉l1 | a〈c〉l2 | blb . (104)

In this example we named events according to their guard ports merely for
readability — another convention would have to be used in case a port is used
more than once in subject position.

One strategy for s̄ is (la|l1]. ls̄ because it doesn’t matter what la is commu-
nicating with, as long as it is consumed. One strategy for t̄ is (la|l1). (lȳ|lb]. lt̄
because a must communicate with a〈b〉 labelled l1 otherwise ȳ won’t get sub-
stituted to b̄ and won’t be able to communicate with b, preventing the next
strategy step from occurring. On the other hand, if ȳ communicates with some
other b-input somewhere else, the strategy still works, so that second step is
singly-anchored.

The expression π1. π2. · · · . πn (π̃′)δ represents a strategy following the se-
quence of steps from π1 to πn but, as it is about to consume step πn, gets

“hijacked” by a transition in a Pj
µ̃j−−−→ P ′j sequence from Definition 6.4.4. The

π̃′ part is a sequence of steps forced by that sequence and is such that its last
step prevents πn from taking place (for instance a step (l|ρ2) prevents a step
(l|ρ1) if l is not replicated). The δ tells how the strategy reacts to it.

Finally, (•|l) [ p ], where p is one of n or n̄ for some number n, tells to consume
l with a labelled transition, and that the required port (whose activeness is being
proved) is respectively the input or the output at l’s nth parameter. Note that
such a step can’t follow a step as in (l0|ρ). (•|l) [ p ], because that would mean that
• is guarded by l0, which is impossible as • is by definition in the environment
and l0 is in the process. Strategy (•|(l0|ρ). l) [ p ], on the other hand, is sensible
(“use ρ to consume l0 and thereby bring l to top-level, then consume l, to obtain
activeness on its parameter port p”).

Example A.5.6 Consider the following process:

P = ! tlt | ! a(x)
la .t̄lt̄ .x̄lx̄ | a〈b〉lā .blb .clc .s̄ls̄
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which is an annotated form of ran(P ) = ! t | ! a(x).t̄.x̄ | a〈b〉.b.c.s̄.
The strategy for s̄A/ c̄A is ρ = (lā|la).

(
lb
∣∣ (la|lā). (lt̄|lt]. lx̄

]
. (lc|•]. ls̄ (so the

annotated dependency is s̄A / c̄A : ρ). This strategy contains four steps, corre-
sponding to the event stack lā, lb, lc and ls̄.

1. The first step does a τa-transition to bring lā and la to top-level.

2. In the second step, (la|lā). (lt̄|lt]. lx̄ tells how to find a communication part-
ner for b, by first bringing the la and lā events to top-level (note that this
step may seem redundant since it duplicates the previous step and doesn’t
correspond to an actual transition. However it may become necessary to
unambiguously identify which instance of the replicated a-input we are
talking about. So this lā step really means we are going to work on the
instance of ! a(x).t̄.x̄ that was created when lā was brought to top-level,
and not any other). The (lt̄|lt] step is a τ -transition between t̄ and t, and
the final step lx̄ of the sub-strategy is our communication partner for b
consumed with a τ -transition.

3. The third step (lc|•) of the strategy indicates that c’s communication should
be found in the environment, i.e. the strategy does a c-labelled transition
at this point.

4. The final step ls̄ indicates where to find the s̄, closing the activeness proof.

In this particular case, if a is input plain, the dependency statement becomes
s̄A / (c̄A ∧ aR), which can be written (s̄A / c̄A) ∨ (s̄A / aR). The strategy for
s̄A/ aR is

(lā|la) (lā|•).
(
(lb|(•|lā)[ 1 ]]. (lc|•]. ls̄

)
:

If a transition sequence µ̃i from (6.4.4) consumes the a-output through the

transition
a〈b〉
−−−−→ then it amounts to forcing ā’s communication partner to be

•, and the strategy on the right of the  is followed, doing a labelled transition
b−−→ instead of

τb−−−→. The b-output, communication partner of lb, is obtained
with (•|lā)[ 1 ].

Note that the strategy (lā|•).
(
(lb|(•|lā)[ 1 ]]. (lc|•]. ls̄

)
on its own corresponds

to the statement s̄/ aAR — the strategy itself decided to do a labelled transition
a〈b〉
−−−−→, and therefore requires activeness on a from the environment.

The following example shows more clearly how activeness and responsiveness
dependencies appear in strategies:

P =
∏
i∈I

ti
lti .a(x)

lai .ui
lui .x̄lxi | a〈s〉lā

(where ran(P ) =
∏
i∈I ti.a(x).ui.x̄ | a〈s〉). That process satisfies the statement

s̄A/
∨
i∈I
∧
j∈I (t̄iA ∧ ūjA) or, equivalently,∨

j∈I

∧
i∈I

(
s̄A/ (t̄iA ∧ ūjA)

)
(105)

Any strategy for s̄A can choose an i ∈ I (the communication partner it will select
for a in the absence of interference), which causes the dependency on t̄iA, but,
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in an actual run, it can be forced a connection with the a-input corresponding
to any j ∈ I, after which it will require ūjA. The strategy for that scenario is
ρij = (lti|•]. (lai|lā) 

(
(ltj |•]. (laj |lā)

)
. (luj |•]. lxj and depends on t̄iA ∧ ūjA: The

strategy prepares a communication between lā and lai by consuming the ti-prefix
(which causes the dependency on t̄iA). But then the communication on ā is

hijacked with the sequence
tj−−→ τ−−→ where the latter transition consumes laj.

Note how the two corresponding steps are grouped by brackets in the strategy to
distinguish the part caused by external interference (not creating dependencies)
and the strategy’s reaction, which is to consume the uj-prefix (causing a ūjA-
dependency) to bring s̄ to top-level.

Inserting strategies ρij into the behavioural statement (105) gives the follow-
ing annotated statement for P :∨

j∈I

∧
i∈I

(
s̄A /

(
t̄iA ∧ ūjA

)
:
(
(lti|•]. (lai|lā) 

(
(ltj |•]. (laj |lā)

)
. (luj |•]. lxj

))
We will often set conditions on strategies and strategies they contain. The

following definition makes that concept precise.

Definition A.5.7 (Sub-strategies) The contains relation is the least transi-
tive relation on activeness strategies such that:

• Let ρ = π1. · · · . πn−1. s where πi ∈ {(li|ρi), (li|ρi]}. Then, for all 1 ≤ i <
n, ρ contains ρi and π1. · · · . li.

• Let ρ = π1. · · · . (ln|ρn) (π̃′)δ. Then ρ contains (π1. · · · . ln), ρn and π̃′δ.

• Let ρ = (•|ρ0) [ s ]. Then ρ contains ρ0.

If ρ contains ρ0, the latter is called a sub-strategy of the former.

Just like activeness strategies prove correctness of an activeness dependency
statement, responsiveness strategies prove correctness of a responsiveness state-
ment. The idea is to attach a strategy to every element of the behavioural
statement as found in the channel type:

Definition A.5.8 (Responsiveness Strategy) A responsiveness strategy is
an expression ρ. φ where φ is generated by the following grammar:

φ ::= sA : ρ
∣∣ pR : ρ. φ

∣∣ pR : •
∣∣ φ ∨ φ

∣∣ φ ∧ φ
∣∣ > ∣∣ •

where p ranges over numerical ports and s over sums of numerical ports.

Definition A.5.9 (Annotated Responsiveness Statement)
Removing Annotations of a responsiveness strategy φ (in which • may only

appear behind a “γ :” prefix), written ran(φ), is the logical homomorphism yield-
ing a dependency ε such that

• ran(sA : ρ)
def
= sA

• ran(pR : ρ. φ)
def
= pR
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Let p be a port and ξ the corresponding behavioural statement in the channel
type. Then an annotated responsiveness statement for p is an expression of the
form pR / ε : ρ. φ where ran(φ) = ξ.

In pR / ε : ρ. φ, ρ tells precisely which p-prefix is being talked about, and φ
gives the strategies of its parameters, if any.

Note the distinction, in a responsiveness strategy, between pR : l.> and
pR : • — the former occurs for channels with trivial behavioural statements
(e.g. parameterless channels), therefore always responsive, and the latter oc-
curs for channels that do not appear in a process, and are therefore vacuously
responsive.

Delegated responsiveness such as b in a〈b〉l is expressed with statements
like bR / aAR : (•|l) [ 1 ] . • where (•|l) [ 1 ] specifies any remote use of b and •
indicates that responsiveness is provided by the environment. Compare with
bA / aAR : (•|l) [ 1 ] that represents remote activeness on b.

Activeness and responsiveness strategies can be put together as follows:

Definition A.5.10 (Annotated Behavioural Statement)
Annotated behavioural statements (ranged over by Φ) follow the grammar

for Ξ given in Definition 6.2.1 on page 29, but where the γ/ ε rule is replaced
by annotated statements

· · ·
∣∣ sA / ε : ρ

∣∣ pR / ε : ρ. φ
∣∣ · · ·

Definition A.5.11 (Annotated Process Type) An annotated process type
is a structure of the form (Σ; ΦL J ΞE) where ΦL is an annotated behavioural
statement, and ΞE a behavioural statement.

Removing strategy annotations from an annotated process type is again done
by the ran operator, that recursively replaces sA / ε : ρ and pR / ε : ρ. φ by sA/ ε
and pR/ ε, respectively.

A.5.3 Structural Semantics: Consistency

In this section we provide precise semantics for annotated behavioural state-
ments. Semantics are split into two parts. Consistency requires a strategy to
only attempt making two prefixes communicate if they have complement ports
and are at top-level. Completeness in Section A.5.4 requires to have a strategy
for every possible interference.

The sub operator gives the port brought to top-level by the given strategy, the
obj operator gives the objects of the prefix brought to top-level, and substP (π)
is the name substitution applied by a strategy step π.

For instance, having P = a(x)
la .b〈x〉lb | a〈t〉lā :

subP ((la|lā). lb̄) = b̄, objP ((la|lā). (lb̄|•)) = t, and substP ((la|lā)) = {t/x}.
Special care is required for bound names, as a single (bound) name can

refer to more than one actual channel over the run of a process. For instance,
having P = ! ala .(νn)Q | āl1 .Q1 | āl2 .Q2, there are two distinct channels n to
be considered, for each i, the one brought to top-level with Qi, which is the
value of sub((la|li). ρ) (assuming sub(ρ) = n). These two n-channels are written
(la|li).νn for i ∈ {1, 2}.

More generally, separate instances of a bound name x are identified by pre-
fixing νx with a sequence of strategy steps π̃.
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Such “extended port names” obey the following grammar:

p ::= π. p
∣∣ νp

∣∣ p

Quotiented by the congruence given by the relation ∀π, p : π. p 7→ p (i.e. only
bound names may be prefixed).

The complement p of such an extended port is obtained with π. p
def
= π. p

and νp
def
= νp̄.

Definition A.5.12 (Strategy Subject and Objects) Let P be a process of
the form C[(νz̃) (R | Gl.Q)].

The subject of a strategy ρ in P is a port written subP (ρ). The objects of
a sequence of steps π̃ in P is a name sequence written objP (π̃).

The substitution associated with a sequence of steps π̃ in P is a function
mapping names to extended ports written substP (π̃). We write substP (π̃)a to
apply the function substP (π̃) on name a. By extension, substP (π̃)p is the identity
if p is not a free port, and substP (π̃)a if p = ā. Finally, it acts on each extended
port individually when passed a tuple as in substP (π̃)p̃.

These three functions are defined inductively on ρ, according to the following
rules:

1. subP (l)
def
= (νz̃) sub(G) (where (νz̃) p is νp if p = p and n(p) ∈ z̃, p

otherwise).

2. subP (π̃. l) = substP (π̃)subP (l)

3. subP (π [ p ])
def
= objP (π̄) [ p ]

(where (x1, . . . , xn) [ i ] = xi and (x1, . . . , xn)[ ı ] = xi)

4. subP (π̃ (π̃′)δ)
def
= subP (π̃′δ)

5. objP (π̃. (l|ρ))
def
= substP (π̃. (l|ρ))obj(G).

6. substP (π̃. (l|ρ))a
def
= a if a 6∈ (bn(G) ∪ z̃)

7. substP (π̃. (l|ρ))a
def
= π̃.νa if a ∈ z̃

8. substP (π̃. (l|ρ))(obj(G) [ i ])
def
= objP ((ρ|π̃. l)) [ i ] if G is an input and if

ρ 6= •.

9. substP (π̃. π)a
def
= π̃. π.νa if a ∈ bn(G) and either π = (l|ρ] for some ρ,

or π = (l|•), or G is an output and π = (l|ρ) for some ρ.

10. All operators used in this definition commute with sums, so for example

subP (
∑
i

li)
def
=
∑
i

subP (li)

(νz̃)
∑
i

pi
def
=
∑
i

(νz̃) pi

subP (π

[∑
i

li

]
)

def
=
∑
i

subP (π [ li ])
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We omit the index P when there is no ambiguity.
As a first step to deciding correctness of a strategy, the following definition

tells whether a strategy for an activeness resource pA is actually able to bring p
to top-level in the absence of interference. Note that it is not really useful as is
because a strategy may in some way interfere with itself (e.g. in (l1|ρ1). (l2|ρ2). l3,
ρ1 could interfere with ρ2). On the other hand, this notion combined with the
completeness introduced in the next section becomes sufficient for correctness
of a type.

In the fourth point, let subP (ρ) = p, n(p) = a and Σ(a) = 〈σ̃; ξI; ξO〉 (Σ
being Γ’s channel type mapping). Then ΣP (ρ) is ξI if p = a and ξO if p = ā.

Definition A.5.13 (Runnable Strategy) Let (Γ;P ) be a typed process.
Then a strategy is (Γ;P )-runnable if and only if it satisfies all the following

rules:

• A strategy is only (Γ;P )-runnable if all its sub-strategies are also (Γ;P )-
runnable.

• A strategy s is (Γ;P )-runnable if s is at top-level in P in the sense of
Definition A.5.5.

• For a strategy π̃. (l|ρ). s, let p = subP (π̃. l). Then:

– l guards s in P , in the sense of Definition A.5.5.

– If ρ = •: p = p for some p and Γ↓p
– If ρ 6= •: subP (ρ) = p̄.

• For a strategy (•|ρ) [ s ], subP (ρ) = p for some p, Γ↓p and ΣP (ρ)↓s

• For a strategy π̃. (l|ρ) (π̃′. (l′|ρ′))δ, π̃. (l|ρ) is runnable (checked by ignor-
ing the condition on s in first point), and either ρ = ρ′ or π̃. l = π̃′. l′.

Note how the semantics of “(l|ρ)” versus “(l|ρ]” affect runnability through the
definition of sub. The substitution subst(π) is only applied to subsequent objects
and subjects when π is doubly anchored (cf. Definition A.5.12). Therefore, in
process (104) on page 91, strategy (la|l1]. (lȳ|lb]. lt̄ is not runnable because the
first step is singly-anchored and so doesn’t apply a substitution on its object y,
and so, in the next step, (extended) ports (la|l1).νȳ and b aren’t complements.
On the other hand, strategy (la|l1). (lȳ|lb]. lt̄ is runnable because now the first
step applies the substitution {b/y}, so ports in the next step become complements
(b̄ and b), as required.

If a strategy ρ with subject p is runnable then there is some ε such that
pA / ε : ρ is correct in absence of interference. The following definition gives a
lower bound (proven as a part of Lemma A.5.31) on ε:

Definition A.5.14 (Dependencies of a Strategy) Let P be a process and
ρ a runnable strategy. Then ρ’s dependencies wrt. P (written depP (ρ)) is the
dependency ε defined as follows.

• depP (s)
def
= >

• depP ((•|ρ) [ s ])
def
= subP (ρ)AR
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• depP ((l|•)) def
= depP ((l|•]) def

= subP (l)A

• depP ((l|ρ))
def
= depP ((l|ρ])

def
= depP (ρ)

• depP (π. ρ)
def
= depP (π) ∧ depP (ρ).

• depP (π̃. (l|ρ) (π̃′). ρ2)
def
= depP (π̃. l) ∧ depP (ρ2)

• depP (π̃. (l|ρ) (•|ρ′) [ p̃ ])
def
= depP (π̃. l) ∧ subP (ρ′)R

In the next to last point, π̃′ is irrelevant when computing a strategy’s de-
pendencies. The reason is that dep computes what is required by the strategy
to progress on its own, while π̃′ represent interference being forced upon it. In
the last point the strategy only requires remote responsiveness, not activeness,
for the same reason.

For responsiveness, the dependencies are obtained by putting together the
dependencies of every component in the strategy. Note how it requires the re-
sponsiveness strategy φ to closely follow the structure of the behavioural state-
ment ξ.

Definition A.5.15 (Dependencies of a Responsiveness Strategy) Let p
be a port whose parameter types are σ̃, and whose behavioural statement in the
channel type is ξ. We define σ̃i and ξq so that σi = 〈σ̃i; ξi; ξı̄〉.

The dependencies of a responsiveness strategy φ for p, written rdepP (σ̃, ξ, φ),
is inductively obtained as follows:

• rdepP (σ̃,>,>) = >

• rdepP (σ̃, ξ1 ∨ ξ2, φ1 ∨ φ2) = rdepP (σ̃, ξ1, φ1) ∨ rdepP (σ̃, ξ2, φ2)

• rdepP (σ̃, ξ1 ∧ ξ2, φ1 ∧ φ2) = rdepP (σ̃, ξ1, φ1) ∧ rdepP (σ̃, ξ2, φ2)

• rdepP (σ̃, sA/ ε, sA : ρ) = depP (ρ) \ ε

• rdepP (σ̃, qR/ ε, qR : ρ. φ) = rdepP (σ̃n(q), ξq, φ) \ ε

• rdepP (σ̃, γ/ ε, •) = γ

Runnability is lifted to process types, by requiring each of its strategies to
be runnable and respect the declared dependencies:

Definition A.5.16 (Consistent Typed Process) An annotated typed pro-
cess (Γ;P ) is said consistent if

• for every activeness statement sA / ε : ρ in Γ’s local component, ρ is
runnable for P , depP (ρ) � ε and subP (ρ) = s (in case s is a sum, up to
reordering of its terms).

• for every responsiveness statement pR / ε : ρ. φ in Γ’s local component, for
every activeness strategy ρ′ appearing in φ, (ρ|•). ρ′ is runnable for P and
rdepP (σ̃n(p), ξp, φ) � ε, writing 〈σ̃a; ξa; ξā〉 for the type of a channel a in
Γ.
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A.5.4 Structural Semantics: Completeness

There are two forms of choices that a process (whether it is selection or branch-
ing) can do. The most obvious is the π-calculus sum operator P+Q that can
evolve according to P or according to Q. The second form is obtained by having
a non-replicated prefix having more than one possible communication partner,
as in

(νa) (a(x)
la .x̄.s̄ | a〈b〉lb | a〈c〉lc | P ) (106)

(where P provides b and c in some way). In that process, there should be (at
least) two activeness strategies for s̄A, one in case a connects to a〈b〉 and one
in case it is a〈c〉.

For both forms, every possible choice should be taken into account in sep-
arate components of the behavioural statement, these components being sepa-
rated by ∨-connectives. Consider for example an activeness strategy π̃. (l|ρ)δ
where l could find partners ρi other than ρ. There should then be as many
π̃. (l|ρ) (l|ρi)δi, again separated by ∨-connectives. Note that l’s communication
partner is effectively a selection performed by the process.

We now give a way to accurately describe choices made by a process or its
environment over a particular run. Consider a process P =

∑
iGi

li .Pi. The
type of that process is essentially

∨
i Γi where each Γi corresponds to one term

of the sum. We identify one particular choice with the corresponding event li:

Definition A.5.17 (Sum Guard) An event l is a sum guard in a process P
if P = C[

∑
i∈I Gi

li .Qi] and l = li for some i ∈ I.
Two distinct events l1 and l2 are contradicting sum guards if they satisfy

the above for the same context C[·], event and process sets Qi, li, but different
i ∈ I.

If the sum itself is guarded, we identify a choice with a strategy ρ (called a
selection strategy). For instance in

Q = ! a(ỹ)
la .P | a〈x̃〉l | a〈z̃〉l

′
(107)

where P is as in Definition A.5.17, independent choices will be made for each
a-output, and are identified by expressions of the form (la|l). li or (la|l′). li, re-
spectively. Selections made by third-party processes are identified in a similar
way. For instance in a process a〈tf〉l, a being a Boolean channel (see Introduc-
tion), it is assumed (and described in the channel type) that the environment
will select one of t̄A and f̄A. As the reader will expect, those two choices are
respectively described as (•|l)[ 1 ] and (•|l)[ 2 ].

Choice of a communication partner is written as a pair (l|ρ). For instance
(106) has two selection strategies (la|lb) and (la|lc). In case l is not at top-level
selection strategies take the form π1. · · · . πn.

The complete set of choices made by a process over a particular course
can be described by a set of such selection strategies. For instance (107) has
four possible choice sets, all of the form { (la|l). li, (la|l′). lj } where i and j
independently range over 1 and 2.

The following two definitions clarify some concepts needed to precisely define
contradicting strategies.
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Definition A.5.18 (Matching Steps) Two sequences of steps π1. · · ·πn and
π′1. · · ·π′n (where πi ∈ {(li|ρi), (li|ρi]} and π′i ∈ {(l′i|ρ′i), (l′i|ρ′i]}) match if for
all 1 ≤ i ≤ n: li = l′i and either ρi = ρ′i or (at least) one of πi and π′i is
singly-anchored.

Two sequences π̃1 and π̃2 are equivalent if any sequence π̃ matches π̃1 if and
only if it matches π̃2.

Sequences are equivalent if and only if they only differ in ρ-components of
singly-anchored steps.

In the following definition, #(l) is shorthand for the multiplicity #(G) of
the corresponding guard Gl in P .

Definition A.5.19 (Contradicting Strategies) Let P be a process.
Two strategies ρ1 and ρ2 contradict wrt. P if there are two matching se-

quences of steps π̃1 and π̃2 such that one of the two following condition is sat-
isfied:

• There are two contradicting sum guards l1 and l2 such that for both i, ρi
contains π̃i. li.

• There are two steps (l|ρ′1) and (l|ρ′2) such that #(l) 6= ω and ρ1 doesn’t
match ρ2, and, for both i, ρi contains π̃i. (l|ρ′i).

Remember (Definition A.5.7) that a strategy ρ = (l|ρ0) (l|ρ1). ρ′ doesn’t
contain (l|ρ0) but does contain (l|ρ1). ρ′. So (assuming ρ0 and ρ1 don’t match)
ρ contradicts (l|ρ0) but not (l|ρ1), as ρ1 is l’s actual communication partner,
although the strategy was “planning” to use ρ0.

Definition A.5.20 (Choice Set) Let P be an annotated process. A choice
set for P is a finite set of runnable activeness strategies (with or without a
final step) such that no two strategies in the set contradict each other and that
includes all sub-strategies of its elements.

In particular, no strategy in a choice set may contradict itself, for instance by
attempting to make a and ā communicate in t.a+u.ā, or using a linear channel
more than once. Note that, just like some processes may have infinitely many
activeness strategies in the presence of recursion, a process may have infinitely
many choice sets.

An annotated behavioural statement is complete if it contains ∨-terms for
every possible choice set, in other words if it is prepared to deal with any
conceivable interference.

Definition A.5.21 (Completeness) An annotated behavioural statement Φ
is complete with respect to P if, having Φ ∼=

∨
i∈I Φi, for every choice set ρ̃C

there is ı̂ ∈ I such that no strategy appearing in Φı̂ contradicts any in ρ̃C .

A.5.5 Annotated Labelled Transition System

We now lift the labelled transition system on typed processes to a labelled
transition system on annotated typed processes.

When a transition on an annotated process brings an event closer to top-
level, that event is replaced by an “extended event” — See grammar on page
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89. Essentially, it is an activeness strategy where a step (lL|lR) is abbreviated
to lR — recording communication partners of prefixes that have already been
consumed. This permits knowing the history of a process, which in turn is re-
quired in order to apply a strategy in the presence of interference. The following
operator records one step of a strategy into a process:

Definition A.5.22 (Strategy Marking Operator) Let P be an annotated
process and l an extended event. Marking P with l, written markl(P ), produces
the annotated process inductively defined as follows:

• markl(l)
def
= l. l

• markl(l1. l2)
def
= l1.markl(l2)

• markl(G
l′ .P )

def
= Gmarkl(l

′).markl(P )

• markl(P1|P2)
def
= markl(P1) |markl(P2)

• markl(P1+P2)
def
= markl(P1) +markl(P2)

• markl((νa)P )
def
= (νmarkl(a)) (markl(P ){markl(a)/a})

• markl(0)
def
= 0

For instance marking al.P with l1 returns al1. l.markl1(P ), and then marking
that process with l2 returns al1. l2. l.markl2(markl1(P )). Note how the operator
always inserts a step just before the final one.

Based on the above marking operator we may now define the labelled tran-

sition system on annotated processes. Instead of the usual P
µ−−→ P ′ notation

we write P
µ,(ll|lr)
−−−−−−−→ P ′ where ll indicates the strategy step corresponding to

this transition (basically, which event it brings to top-level), and lr where the

communication partner is found. In a τ -reduction P
τ,(li|lo)
−−−−−−−→ P ′, li and lo

indicate respectively the input and output prefixes that are communicating.

−

a〈x̃〉l.P
a〈x̃〉,(l|l′)
−−−−−−−−→ markl′(P )

(A-Out)

−

a(ỹ)
l
.P

a(x̃),(l|l′)
−−−−−−−−→ markl′(P ){x̃/̃y}

(A-Inp)

P
(νz̃:σ̃) a〈x̃〉,(lo|li)−−−−−−−−−−−−−−→ P ′ Q

a(x̃),(li|lo)
−−−−−−−−−→ Q′

P |Q
τ,(li|lo)
−−−−−−−→ (νz̃ : σ̃) (P ′ |Q′)

Q |P
τ,(li|lo)
−−−−−−−→ (νz̃ : σ̃) (Q′ |P ′) (A-Com)

Rules (A-Open), (A-Rep), (A-New), (A-Par), (A-Sum) and (A-Cong)
are identical to the corresponding ones in Table 2 on page 5 except that they
additionally carry l components on the transition label without modification.
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Using this labelled transition system, bringing an event l to top-level trans-
forms it into l. l, where l is the strategy used for that.

As event annotations in processes change, activeness strategies need to be
updated accordingly:

Definition A.5.23 (Strategy Transition Operator) Let ρ be an activeness
strategy and π an event pair (l1|l2) where l2 may be •.

Then ρoπ is the activeness strategy obtained as follows (the word “otherwise”
is used in the sense “if none of the previous rules apply”).

• If ρ and π contradict then ρ o π = ⊥.

• l o π def
= l otherwise.

• If one of π. ρ0 and π̄. ρ0 matches π0. ρ0 then (π0. ρ0) oπ def
= markl2(ρ0) oπ.

• ((l0|ρ0). ρ1) o π def
= (l0|ρ0 o π). (ρ2 o π) otherwise.

• π0 [ q̃ ] o π = ⊥ if π or π̄ matches π0.

• (•|ρ0) [ q̃ ] o π = (•|ρ0 o π) [ q̃ ] otherwise.

• (π̃ (π)δ) o π def
= (π̃ (π)δ) o π̄ def

= (πδ) o π.

•
(
π̃ (π̃′)δ

)
o π def

= (π̃ o π) 
(
(π̃′)δ o π

)
otherwise.

with the following extension of the mark operator from Definition A.5.22:

• markl((l0|ρ0))
def
= (markl(l0)|ρ0).

• markl(π̃ (ρ0)δ)
def
= markl(π̃) (ρ0)δ

That operator is lifted to behavioural statements: Φ 7→ Φ o π is a logical
homomorphism such that

• If Φ ∼= > then Φ o π def
= >.

• If ρ o π = ⊥ then

– (sA / ε : ρ) o π def
= ⊥

– (pR / ε : ρ. φ) o π def
= >

• otherwise,

– (sA / ε : ρ) o π def
= sA / ε : (ρ o π)

– (pR / ε : ρ. φ) o π def
= pR / ε : (ρ o π). (φ o π) (where φ o π follows the

same rules as Φ o π, without the ε)

• Φ o π def
= Φ when no other rules apply.

On process types, (Σ; ΦL J ΦE) o π def
= (σ; ΦL o π J ΦE).
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Transition on annotated typed processes are defined similarly to those on
typed processes in Definition 3.2.4:

Definition A.5.24 (Typed Labelled Transition System) The Transition
Operator Γ o µ on annotated process types modifies the type precisely as in Def-
inition 6.3.12 on page 37.

The labelled transition relation on annotated typed processes:

(Γ;P )
µ−−→ (Γ′;P ′)

if there is π such that P
µ,π−−−−→ P ′ and (Γ o µ) o π = Γ′. If π = (ll|lr) and µ 6= τ

then lr must be •.

Note that σ[x̃] and σ[x̃] used in Definition 6.3.12 contain no strategies, so
Γ o µ yields a “mixed” process type that contains strategy annotations on some
statements but not all. As we will see, the weakening constraint from Definition
6.4.4 drops precisely those statements that do not have strategies.

The following lemma is easily shown by dropping all strategy annotations
on transition labels and processes and noting that it reduces to the LTS seen in
Section 1. The reciprocal is obtained by annotating transitions with strategies
obtained from the process, and inductively constructing the labelled transition
sequence as indicated by the rules (A-Inp) and (A-Out).

Lemma A.5.25 (LTS Equivalence) Let (Γ;P )
µ̃−−→ (Γ′;P ′) be a transition

sequence on annotated typed processes. Then ran(Γ;P )
µ̃−−→ ran(Γ′;P ′).

Reciprocally, let ran(Γ;P )
µ̃−−→ (Γ′;P ′) be a transition sequence on non-

annotated typed processes. Then there is exactly one (Γ′0;P ′0) with (Γ;P )
µ̃−−→

(Γ′0;P ′0) and ran(Γ′0;P ′0) = P ′.

The following lemma tells how strategy subjects evolve when the process
goes through a transition. It serves as a base to proving safety of runnability.

Lemma A.5.26 (Subject Transitions) Let (Γ;P )
µ−−→ (Γ′;P ′) be a transi-

tion on annotated typed process and let π be the strategy step used to prove it
using Definition A.5.24, and let p an extended port. Then there is an extended
port p′ such that, for any runnable strategy ρ such that ρ o π 6= ⊥, subP (ρ) = p
implies subP ′(ρ o π) = p′, and subP (ρ) = p̄ implies subP ′(ρ o π) = p′.

Proof The transition put in communication a lI -labelled guard with a lO-labelled
one in case neither is •, or consumed a lI -labelled (resp., lO-) guard through a
labelled transition, in which case we set lO (resp., lI) to •.

First assume p is the free port p. Then p′ = p.
Let ρ be a runnable and complete strategy with ρoπ 6= ⊥ such that subP (ρ) =

p, and set ρ′ = ρ o π. We need to show that subP ′(ρ′) = p as well.
As ρ′ 6= ⊥, ρ and π don’t contradict.

1. ρ = l.

Then ρ o π = ρ.

By non-contradiction, either l 6∈ {lI , lO} or the l-tagged guard is replicated,
so the l-guard is still available in P ′ and subP ′(ρ) = subP ′(ρ o π) = p as
required.
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2. ρ = π̃. l.

Let π0 = (l0|ρ0) be the first step of π̃.

This case is proven differently depending if π0 matches π.

3. ρ = π̃. l and π0 does not match π.

As π and π0 do not match, by non-contradiction, the l0-guard must still
be available unchanged in P ′ (up to α-renaming).

Let q be subP (l) and q′ be subP ′(l). subP (ρ) and subP ′(ρ′) are respectively
obtained by applying substP (πi) and substP ′(π′i) in sequence from right
to left. As the substitution only acts on free names and p is free, we
either have q = p, or one of the πi did the substitution q 7→ p, because
objP (li)[k] = n(q) and objP (ρi)[k] = n(p), for some index k.

The q = p case happens if and only if q is not bound by any of its prefixes,
which is preserved by the transition as the process in unchanged up to
α-renaming, so p = p′ = p, as required.

Assume instead objP (li)[k] = n(q) and objP (ρi)[k] = n(p), where li binds
q. Then α-renaming preserves the index k and the induction hypothesis
preserves objP (ρi)[k] = n(p), as n(p) is free, so p = p′ = p, as required.

4. ρ = π̃. l and π0 matches π.

Let l̄0 be such that {l0, l̄0} = {lI , lO}. Then ρ is transformed into ρ′ as
follows: The π0 prefix is dropped, every li (including l) is replaced by
l′i = markl̄0(li) and every ρi (i 6= 0) is replaced by ρ′i = ρi o π. The
transition replaces a sub-process Gl0 .Q by markl̄0(Q){x̃/obj(l0)}, where x̃ is
one of obj(l0), obj(l̄0) and obj(µ), depending on whether G is an input or
an input, and whether l̄0 = • (there may be additional changes in the

process, such as a similar reduction on a sub-process G′
l̄0 .Q′, removal or

expansion of bound names, and keeping a copy of those sub-processes if
they are replicated).

In particular each li (i > 0) both in ρ and in Q get replaced by l′i.

Three cases:

• subP (l) = p, i.e. l’s subject is free. See 5.

• subP (π1. · · · . l) = p, i.e. l’s subject is bound by an input contained
inside G, and substituted to a free port by that input’s communica-
tion partner. See 6.

• subP (π1. · · · . l) = q, i.e. l’s subject is bound but is substituted with
a free port by G’s communication partner. See 7.

5. ρ = π̃. l, π0 matches π, and subP (l) = p.

As in the q = p case of point 3, p is not bound by any of its prefixes.
As the labelled transition system only substitutes bound names we have
subP ′(markl̄0(l)) = p as well, which is still not bound by any of its prefixes
so we get subP ′(ρ′) = p as required.
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6. ρ = π̃. l, π0 matches π, and subP (π1. · · · . l) = p.

Let subP (l) = q. In order to compute subP (π1. · · · . l), one applies all
substP (π1. · · · . πi) one by one with decreasing i until one (say, π1. · · · . πj ,
corresponding to some input guard Gj) substitutes q with p. By hy-
pothesis j 6= 0, n(q) = objP (lj) [ k ] for some k, sub(lj) is an input and
objP (ρj) [ k ] = n(p).

Let subP ′(markl̄0(l)) = q′. It might be different from q due to α-renaming
but we have n(q′) = objP ′(markl̄0(lj)) [ k ] because l is contained in Gj ’s
continuation. As p is free, induction hypothesis applies and objP (ρj) =

objP ′(ρj oπ), so substitution works as before and we get subP ′(π′1. · · · . l̂) =
p, as required.

7. ρ = π̃. l, π0 matches π, and subP (π1. · · · . l̂) = q ∈ bn(G).

In this case q got substituted to p by π0. This requires (Definition A.5.12)
π0 to be doubly anchored, which in turn requires (for π0 to match π)
π0 = (l0 |̄l0). substP (π0) is obj(l0) 7→ obj(̄l0).

In the process, Gl0 .Q|G′ l̄0 .Q′ becomes markl̄0(Q{obj(̄l0)/obj(l0)})|markl0(Q′).

Strategy subjects commute with substitution when free: If subP (ρ) = p
then subP{x/y}(ρ) = p{x/y}. In this case subQ|...(π1. · · · . l){obj(̄l0)/obj(l0)} =
p implies submarkl0 (Q{obj(l̄0)/obj(l0)}) | ···(π

′
1. · · · .markl0(l)) = p.

In other words subP ′(ρ′) = p, as required.

Now let p = νp, and let P = (νz̃)P0.

If µ is a τ or an input then p′ = p. If µ is an output, let P0
µ0−−−→ P ′0 be

the intermediate transition prior to the application of (Open) or (New) of the
LTS. Claim: If n(p) = obj(µ0) [ k ] then p′ = obj(µ) [ k ]. Otherwise p′ = p.

By Definition A.5.12, sub(νz̃)P0
(ρ) = (νp) requires subP0(ρ) = p, otherwise

the binding would be prefixed. Applying the reasoning done above for free p we
get subP0

(ρ) = subP ′
0
(ρ′) = p.

In case the bound output µ did some α-renaming on z̃ (say, {ỹ/̃z}), we get
P ′ = (νỹ′) (P0{ỹ/̃z}), and subP ′(ρ′) = (νỹ′) (p{ỹ/̃z}), for some ỹ′ ⊆ ỹ. We have
n(p){ỹ/̃z} ∈ ỹ′ precisely when the condition on µ’s objects given above holds.

Now let p = π̂.νp, where π̂ = (̂l|ρ̂) matches π. Claim: if n(p) ∈ objP (̂l),

p′ = p{obj(µ)/objP (̂l)} satisfies the requirements. Otherwise (n(p) 6∈ objP (̂l)) we

have p′ = νp, modulo α-renaming (done by the transition on (νn(p)) found at
top-level in the process).

The p′ = νp case is proved as part of the more general π̃′.νp later on.
Assume n(p) ∈ objP (̂l) and let subP (ρ) = p.

1. ρ = l, by Definition A.5.12, can’t have a prefixed subject such as p.

2. ρ = π̃′. l.

Let q = subP (l). As p 6= q, q must be bound by one of its prefixes, say lj .
Two cases: 3. n(q) ∈ bn(lj) and lj is either an output or a singly-anchored
input, or lj ’s continuation binds q. 4. lj is a doubly-anchored input and
n(q) ∈ objP (lj).

104



3. ρ = π̃′. l. n(q) ∈ bn(lj) and lj is either an output or a singly-anchored
input, or lj ’s continuation binds q.

Following Definition A.5.12, subP (ρj . · · · . l) = πj .νq, and then all sub-
sequent πi (i < j) get added to that bound port, so we get subP (ρ) =
π0. · · · . πj .νq. By hypothesis subP (ρ) = π̂.νp so we conclude j = 0,
π0 = π̂ and p = q.

As π matches π̂, ρ oπ = π′1 . . . l
′
j where π′i = (markl̄0(li)|ρi oπ), l̄0 being l0’s

communication partner according to π.

The process P , as ρ is runnable, contains Gl0 .Q, where Q contains l, and
l’s subject q is free in Q. After the transition (π puts l0 in communication
with l̄0) that part of the process becomes markl̄0(Q){obj(µ)/obj(G)} in P ′.

We made the assumption n(q) = n(p) ∈ objP (̂l) = objP (l0), so subP ′(l) =
q{obj(µ)/obj(G)} = p{obj(µ)/obj(G)}, as required (remember that p = q).

4. ρ = π̃′. l. lj is a doubly-anchored input and n(q) ∈ objP (lj).

The proof of point 6 on page 104 (for p free) applies here as well: subP (l)
gets replaced by π̂.νp which becomes q{obj(µ)/obj(G)} after the transition,
by induction hypothesis.

Now let p be the bound sequence π̃∗.νp, such that π̃∗ either has more than
one step, or has a single step π∗0 that either does not match π, or is such that
n(p) 6∈ objP (l∗0). Then p′ = p o π, where o is defined as in Definition A.5.23
and mark leaves bound names νp unchanged (up to α-renaming — the last π∗j
uniquely identifies in the process a binder of n(p), and if the transition α-renames
n(p), the corresponding change should be applied in p′).

1. ρ = l is contradictory as before as its subject can’t be p.

2. ρ = π̃. l

Similarly to the p = π̂. l case, we distinguish whether sub(l) gets bound (in
which case ρ = π̃∗. πj+1. · · · . l with πj = π∗j binding subP (l) where πj can
only be a doubly-anchored input if its strategy is ρj = •), or substituted
(in which case the induction hypothesis applies as usual).

We assume the former, as the latter has been covered already.

3. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 doesn’t match π.

As sub(ρ) binds p rather than substituting it, subP (l) = p. As π doesn’t
match π0 but doesn’t contradict ρ, the l0-guard G and its continuation Q
are left unchanged by the transition, up to α-renaming, in particular the
events li are left as is. Let subP ′(l) = p′.

As π0 and π do not match, ρ o π = ρ′ = π̃′. l where π′i = (li|ρi o π).

As Gl0 .Q is preserved in P ′, p′ is not bound by any prefix π′i with i > j.
It is bound (not substituted) by π′j because ρ′j = • ⇐⇒ ρj = • and
anchoring is preserved.

The subject subP ′(ρ′) is therefore p′ = π′0. · · · . π′j .νp′, as required.
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4. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 matches π.

As in point 3 of case p = νp on page 105, by ρ-runnability P contains
a process Gl0 .Q that becomes Q′ = markl̄0(Q){obj(µ)/obj(G)}. As in the
previous case, p = subP (l) and let p′ = subP ′(markl̄0(l)).

By hypothesis on p, at least one of these three conditions hold:

• j > 0. See 5.

• π∗0 doesn’t match π. Directly contradicts “π0 matches π”.

• n(p) 6∈ bn(l∗0). See 6.

5. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 matches π. j > 0.

By the guarding constraints given by runnability, lj is contained in Q
and becomes markl̄0(lj). As p is bound by lj in Q, p′ must be bound
by l′j = markl̄0(lj) in Q′, and so subP ′(π′j . π

′
j+1. · · · . l′) = νp′, so we get

subP ′(ρ′) = subP ′(π′1. · · · . π′j . · · · . l′) = π′1. · · · . π′j .νp′, as required.

6. ρ = π̃. l. ∀i ≤ j : πi = π∗i . πj binds subP (l). ρj = • or πj is not a
doubly-anchored input. π0 matches π. n(p) 6∈ bn(l∗0).

As the j > 0 case got covered in the previous case, let j = 0, i.e. p = π0.νp
and subP (π1. · · · . l) = p. As n(p) 6∈ bn(l0), we must have Q = (νz̃)Q0

with n(p) ∈ z̃ and p free in Q0.

After the transition, Gl0 .(νz̃)Q0 becomes markl̄0((νz̃′)Q0{z̃
′
/̃z}){µ̃/obj(G)},

with p′ = p{z̃′/̃z} (in other words the transition α-renames z̃ to z̃′). As
p is free in Q0, p′ is free in Q0{z̃

′
/̃z}, so we get subP ′(ρ′) = νp′. As π0

matches π, π0.νp
′ o π = νp′ so we are done.

2

The previous lemma implies (proved as part of Lemma A.5.29) that runnable
strategies and consistent types remain runnable and consistent when the process
evolves.

The following one is in some sense a reciprocal, in that if P
µ̃−−→ Q, for any

Q-runnable strategy ρ′ there is a corresponding P -runnable strategy ρ such that
ρ o π̃ = ρ′ (where π̃ is the sequence of steps corresponding to µ̃), which in turn
guarantees that a complete type remains complete when the process evolves.

Lemma A.5.27 (Completeness of Strategies) Let (Γ;P )
µ−−→ (Γ′;P ′) be a

transition that, if it is an input, has only fresh and distinct objects. Let p′ be an
extended port. Then there is an extended port p such that:

For all runnable strategies ρ′ such that subP ′(ρ′) = p′ there is a strategy
ρ that satisfies the guarding and top-levelness constraints of Definition A.5.13,
such that subP (ρ) = p and ρ o π = ρ′.

The same properties hold substituting p′ with p′ and p with p̄ (i.e. the p′ 7→ p
transformation commutes with the complement operator).

Proof The construction of ρ from ρ′ is the same in all cases so we give it first.
Let π = (lI |lO). The transition transforms a process sub-term GI

lI .QI
into Q′I = marklO (QI){obj(µ)/obj(GI)} and/or GO

lO .QO into Q′O = marklI (QO)
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(modulo α-renaming). The “and/or” is resolved by checking if µ is an input
(only produce Q′I), an output (only Q′O) or a τ (both Q′I and Q′O).

Let ρ′ = π′1. π
′
2. · · · . ln with πi ∈ {(l′i|ρ′i), (l′i|ρ′i]}.

If l′1 occurs in Q′O (respectively, Q′I), then for all i, l′i = marklO (li) (respec-
tively, l′i = marklI (li)), for some li. if l′1 occurs in neither, set li = l′i for all
i.

If l′1 occurs in Q′I , set π0 = π. If l′1 occurs in Q′O, set π0 = π̄. Otherwise (to
avoid a multiplication of otherwise similar cases) we’ll say π0 is “neutral” in the

sense that π0. ρ
def
= ρ.

Apply this ρ′ 7→ ρ transformation inductively (for the same transition µ and
step π) to obtain ρi, for all i s.t. ρ′i 6= •. The remaining ρi are filled in for
increasing values of i:

Let ρ′i = •. If subP (π0. π1. · · · . li) is a free port, set ρi = • as well. Otherwise
(the steps from π1 to πi−1 can’t bind subP (li) as Q′I and Q′O were obtained from
QI and QO by renaming that avoids capture), GI (or GO) binds that port. Let
q be such that obj(GI) [ q ] = subP (li) (respectively, obj(GO) [ q ] = subP (li)).
Set ρi = π̄ [ q ] (respectively, π [ q ]). Note that in both cases ρi is of the form
(•|l) [ q ] with l ∈ {lI , lO}.

The strategy ρ is then equal to π0. π1. · · · . ln where πi = (li|ρi) for i > 0.
In case ρ′ was of the form (•|ρ′0) [ p ], transform ρ′0 into ρ0 following the above

procedure and set ρ = (•|ρ0) [ p ].
The reader may want to verify that the above construction implies ρ oπ = ρ′

in all cases.
To verify guarding constraints on ρ for P , assume l′1 is neither in Q′I nor in

Q′O. Then the sequence l′1, . . . , l
′
n has each event guard the next in P ′, with l′1

at top-level, and therefore the sequence l1, . . . , ln also has each event guard the
next in P with l1 at top-level (remember that in this case ∀i : li = l′i. If l′1 is in
Q′I , the l′i sequence similarly satisfies guarding requirements with l′1 at top-level
in P ′ and therefore in Q′I . By the definition of Q′I , l1 is at top-level in QI and all
li+1 with i ≥ 1 are guarded by li. As the first step of ρ is π0 = π = (lI |lO) and
QI is the continuation of GI

lI , l0 = lI is at top-level and guards l1, as required.
The Q′O case is similar, swapping lI and lO.

We now show a p′ 7→ p transformation that is consistent with ρ′ 7→ ρ and
satisfies the lemma requirements.

We treat all possible cases one by one, subdividing cases as needed. Each
point starts with the hypotheses for the case followed by the proof for that case.

We first distinguish if p′ is free (case 1) or bound (case 6).

1. p′ is a free port p′.

By hypothesis if µ is an input its objects must be fresh. If µ is an output,
its bound objects must not be in fn(P ), because of the side condition of
the (Par) LTS rule. Therefore, if n(p′) ∈ bn(µ) then n(p′) is not free in
P and p must be bound (Case 2). Otherwise p = p′ as well, as shown in
Case 5.

2. p′ is a free port p′. n(p′) ∈ bn(µ).

Let l be such that (•|l) ∈ {π, π̄} (we have π = (•|lO) in case µ is an output
and π = (lI |•) in case µ is an input. µ = τ is excluded as bn(µ) 6= ∅.)

Let q be such that p′ = obj(µ) [ q ] and set p = obj(G) [ q ] (where G is the
prefix in P consumed by µ, i.e. GI if µ is an input, GO otherwise).
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Then p = (l|•).νp satisfies the requirements as we show now.

Let ρ′ = π′1. · · · . l′n be a strategy such that subP ′(ρ′) = p′, and let ρ be
the strategy obtained as described earlier.

As p′ is free, we either have subP ′(l′n) = p′ (case 3) or subP ′(l′n) = p0 and
one of the substP ′(π′i) substitutes n(p0) to n(p′) (case 4).

3. p′ is a free port p′. n(p′) ∈ bn(µ). subP ′(l′n) = p′.

As p′ is fresh, ln must appear in the continuation Q (one of QI and QO)
of G and l′n in the corresponding process term Q′ in P ′. So the ρ′ 7→ ρ
construction implies ρ = (l|•). π1. · · · . ln and subp(π1. · · · . ln) = p. n(p)
is bound in G as it is bound in the transition label, so subP (ρ) = (l|•).νp,
as required.

4. p′ is a free port p′. n(p′) ∈ bn(µ). subP ′(l′n) = p′0 and substP ′(π′j) substi-
tutes n(p′0) to n(p′).

So objP ′(l′j) [ q ] = p′0 and objP ′(ρ′j) [ q ] = p′ for some q. By induction
hypothesis there is ρj satisfying the lemma conditions (where ρ′ and ρ in
the statement stand for ρ′j and ρj), so objP (ρj)q = p.

Let subP ′(l′n) = p0 (which may be distinct from p′0 in case α-renaming
occurred). Then n(p0) is not bound by any of the prefixes corresponding
to πi with j < i < n (as that property is preserved by α-renaming and
capture-avoiding substitution). For the same reasons n(p0) is bound by
lj , so subP (ρ) = p0{objP (ρj)/objP (lj)} = p, as required.

Note that the proof of this case works every time a subject is captured
by a subst(πi)-substitution so in the following cases we assume that no
substP ′(π′i) captures subP ′(l′n).

5. p′ is a free port p. n(p) 6∈ bn(µ).

In this case p = p′ = p satisfies the requirements (we write p instead of p′

because there is no renaming involved but the reader may prefer to write
p′ = p′ and p = p, with of course p = p′).

Let ρ′ = π′1. · · · . l′n be such that subP ′(ρ′) = p. So for all 0 < i < n, l′i
does not bind n(p). This is preserved by renaming so for all 0 < i < n,
li does not bind n(p) and we get subP (π1. · · · . ln) = p. As µ’s input
or bound objects are fresh, they are necessarily distinct from n(p), so
subP (ln) = subP ′(l′n) and either l1 is at top-level (in which case we’re
done) or l1 is guarded by one of lI and lO which, by hypothesis, doesn’t
bind p, so subP (ρ) = subP (π1. · · · . ln) = p, as required.

6. p′ is bound.

Examining the proof of Lemma A.5.26, the only case in which p′ =
subP ′(ρ′) is bound requires p = subP (ρ) being bound as well, and sat-
isfy p o π = p′. Fix p′ = π′1. · · · . π′j .νp′. Then p = π0. · · · . πj .νp satisfies
the requirements, where p 7→ p′ corresponds to any α-renaming occurring

in the P
µ;π−−−→ P ′ transition and π0 is either “neutral” (when µ = τ , p

is really π1. · · · . πj .νp) or a step (l|•) ∈ {π, π̄}, just like described in the
ρ′ 7→ ρ mapping at the beginning of this proof. Note that p o π = p′.
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Let ρ′ be a strategy with subject p′ and define π′i, l
′
i, ρ
′
i and their coun-

terparts without a tick ′ as in all previous cases. Note that the π′i for
i ≤ j necessarily coincide with the ones occurring in p′, by the definition
of subP ′ . As in the previous cases π′j is the step with largest j that binds
p′, and we assume substP ′(π′j) doesn’t capture it (if it does, refer to step
4). All this properties are preserved by renaming and marking, so πj is
the step with largest j that binds p, and substP (πj) doesn’t capture it. So
we immediately get subP (ρ) = π0. π1. · · · . πj .νp = p, as required.

2

The weight of a strategy (over-) estimates how many transitions are required
to bring its final step to top-level and is an essential component of proving
liveness.

Definition A.5.28 (Weight of a Strategy) The weight wt(ρ) of a strategy
ρ is defined inductively:

• wt(l)
def
= wt(•) def

= 0

• wt((•|ρ) [ p ])
def
= wt((l|ρ))

def
= wt((l|ρ])

def
= wt(ρ) + 1

• wt(π. ρ)
def
= wt(π) + wt(ρ)

• wt(π̃1 (π̃2)δ)
def
= wt(π̃1) + wt(π̃2δ)− wt(π̃2)

“Elementary” in the following definition refers to the image of relation ↘.
See Definition 6.4.2 on page 40.

Lemma A.5.29 (Runnability Safety) Let (Γ;P ) be a consistent, complete

and elementary annotated typed process. Then for any transition (Γ;P )
µ−−→↘

(Γ′;P ′) such that Γ � Γ′, (Γ′;P ′) is consistent, complete and elementary as
well, and wt(Γ) ≤ wt(Γ′).

Proof First of all, Γ′ is elementary by definition of the ↘ relation.
We first prove Γ′ is consistent before proceeding to completeness.
Let Γ’s local dependency network be sA / ε : ρ. Let π = (lI |lO) be the

step used to prove (Γ;P )
µ−−→↘ (Γ′;P ′) following Definition A.5.24. Then that

transition put in communication a lI -labelled guard with a lO-labelled one in
case neither is •, or consumed a lI -labelled (resp., lO-) guard through a labelled
transition.

The strategy of p in Γ′ is ρ′ = ρoπ. We assume ρ′ 6= ⊥ otherwise Γ′ = > which
is vacuously consistent. This implies that π doesn’t contradict ρ. By hypothesis,
ρ is runnable. We show by induction on ρ’s structure that all conditions in
Definition A.5.13 are preserved in ρ′. By induction hypothesis, the strict sub-
strategies of ρ′ (i.e. those distinct from ρ′ itself) are runnable.

There is a large number of cases that need to be proved separately.

1. ρ = s.

By runnability it must be at top-level in P . If neither s ∩ {lI , lO} = ∅
(seeing the sum s as the set of its terms) then ρ′ = s and s was not
consumed by µ, so it still is at top-level in P ′. If s ∩ {lI , lO} = l then, by
non-contradiction, s must be replicated in P and s = l, so it remains at
top-level in P ′ no matter what µ is doing.
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2. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s.

Let p = subP (π̃. l̂) and p′ = subP ′(π̃′. l̂′). Then:

• l̂ guards s.

• If ρ̂ = •: p = p for some p and Γ↓p. See 3.

• If ρ̂ 6= •: subP (ρ) = p̄. See 4.

The first condition, that the l̂ guards s is proved differently depending if
π0 matches π (point 6) or not (point 5).

3. ρ = π̃. (̂l|•). s or ρ = (̂l|ρ̂). s. p = p for some p. Γ↓p.
By Lemma A.5.26, p′ = p as well, and, by non-contradiction with s, Γ′ ↓p
as well.

4. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s. ρ̂ 6= •. subP (ρ) = p̄.

By Lemma A.5.26, subP (ρ̂) = p̄ implies subP ′(ρ̂ o π) = p′.

Let π0 = (l0|ρ0) be the first step of π̃, (or be (̂l|ρ̂) in case π̃ is empty).

5. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s. π0 does not match π.

ρ′ is equal to ρ in the li, and the ρi are replaced by ρi oπ. The sequence of li
is therefore preserved by transition, and, by non-contradiction, l0 and the
process it guards is preserved by µ. In particular, the l̂ guards s condition
is preserved.

6. ρ = π̃. (̂l|ρ̂). s or ρ = (̂l|ρ̂). s. π0 matches π.

Let l̄0 be such that {l0, l̄0} = {lI , lO}. Then ρ is transformed into ρ′ as

follows: The π0 prefix is dropped, every li (including s and, if applicable, l̂)
is replaced by l′i = markl̄0(li) and every ρi (i 6= 0) is replaced by ρ′i = ρi oπ.
The transition replaces a sub-process Gl0 .Q by markl̄0(Q){x̃/obj(l0)}, for

some x̃. In particular every li (i > 0), including l̂ and s, is replaced in
both Q and ρ by markl̄0(li). The two following cases cover the two possible
forms of ρ.

7. ρ = π̃. (̂l|ρ̂). s. π0 matches π.

l̂ guarding s in Q implies that l̂′ guards l′ in Q′, as required.

8. ρ = (̂l|ρ̂). s. π̂ matches π.

ρ′ = l′. As l̂ guards s in P , s is at top-level in Q and l′ is at top-level in
Q′, so at top-level in P ′ as well, as required.

We now show that completeness is preserved by the transition. Let Φ =∨
i∈I Φi. As o is a logical homomorphism, Φ′ =

∨
i∈I Φ′i where Φ′i = Φi o π. We

set once more π = (lI |lO).
A key part of proving that is the following corollary of Lemma A.5.27: Let

ρ′ be a selection strategy for P ′. Then there is a selection strategy ρ for P such
that ρ o π = ρ′.

The construction of ρ from ρ′, µ and π is given in the proof of Lemma
A.5.27. We show that ρ is runnable if ρ′ is. The guarding constraints have
already been shown in the lemma but we still have to show that (li|ρi)-steps
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satisfy the complementarity constraint when ρi 6= •, and that (li|•)-steps satisfy
the free name requirements.

We work by induction on the weight of ρ′.
Let ρ′ = π′1. · · · . l′n (for a selection strategy whose final step is a pair the

proof is the same, just ignoring the l′n and requiring n > 1). Let ρ = π0. π1 · · · . ln
be obtained from ρ′ as given in the proof of Lemma A.5.27.

We treat differently the “base case” n = 1 (i.e. ρ′ = l′1, Case 1) and the “step
case” n > 1 (Case 2).

1. ρ′ = l′1.

If π0 is “neutral”, ρ = l1 and there’s nothing to show (we already showed
as part of Lemma A.5.27 that l1 is at top-level in P ).

Otherwise ρ ∈ {(lI |lO), (lO|lI)}. If neither is •, µ = τ and the transition
was proved from the (A-Com)-rule of the LTS which requires the sub-
jects of communicating guards to be complements, i.e. subP (lI) = a and
subP (lO) = ā for some a so we’re done.

If π0 = (l|•) then µ 6= τ has subject p = subP (l) and Γ′ being well-defined
requires Γ o p being defined as well, from the definition of the o operator,
i.e. p is observable, as required.

2. ρ′ = π′1. · · · . l′n, n > 1.

Following the usual naming convention we have π′n−1 = (l′n−1|ρ′n−1). We
treat ρ′n−1 = • (Case 3) and ρ′n−1 6= • (Case 6) differently.

3. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 = •.
As ρ′ is runnable, subP ′(π′1. . . . l

′
n−1) is free in P ′ (let’s call it p′) and

Γ′-observable.

Applying Lemma A.5.27, p = subP (π0. π1. . . . ln−1) is either free and equal
to p′ (Case 4), or is bound and equal to (l|•).νp for some l given by π,
and p (Case 5).

4. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 = •. p is a free port p.

As shown in Lemma A.5.27 we have p = p′ and p is necessarily observable
in Γ as µ is either τ (in which case Γ = Γ′) or an input that doesn’t bind
n(p).

5. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 = •. p = (l|•).νp.
As shown in Lemma A.5.27, p bound can only become p′ free if µ 6= τ . So
p = objP (l) [ q ] for some q and p′ = p′ = obj(µ) [ q ].

The ρ′ 7→ ρ-construction sets ρn−1 = (•|l) [ q̄ ] in this case. We then have
subP (ρn−1) = (l|•).νp̄ = p̄, as required.

6. ρ′ = π′1. · · · . l′n, n > 1. ρ′n−1 6= •.

By runnability, subP ′(ρ′n−1) = p′. Having p = subP (π0. · · · . ln−1) =
p, noting that ρn and π0. · · · . ln−1 have been obtained from ρ′n−1 and
π1.
′ · · · . l′n−1 following the same ρ′ 7→ ρ-construction as in Lemma A.5.27

we have subP (ρn−1) = p̄, as required.
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2

A key component of proving correctness of an annotated process type is the
following lemma, that effectively connects process structure (activeness strate-
gies) and process behaviour (transition sequences).

Lemma A.5.30 (Strategy Application) If (Γ;P ) is a consistent, complete
and elementary annotated typed process, and ρ̃ be a choice set, then either (Γ;P )

is immediately correct or there is a transition (Γ;P )
µ−−→ (Γ′;P ′) such that

wt(Γ′) < wt(Γ).

Proof The conclusion can be obtained in three different ways:

1. (Γ;P ) is immediately correct.

2. (Γ′;P ′) is immediately correct.

3. (Γ′;P ′) is not immediately correct but has a weight strictly less than
(Γ;P ).

Let Γ’s local dependency network be sA / ε : ρ. We proceed by induction on
wt(ρ), and will have to consider all three cases above when using the induction
hypothesis.

If ρ = s =
∑
i li then s is at top-level in P and P ≡ (νã) (

∑
iGi

li .Qi | R),
where

∑
i sub(Gi) = s, so Γ is immediately correct.

If ρ = (ρ0|•) [ s′ ], let p0 = sub(ρ0). Set Γ0 to Γ but with local component
p0A / ε : ρ0. As Γ is consistent and complete, so is Γ0, and the induction
hypothesis applies. Case 1: Γ0 is immediately correct so p0 is at top-level and

there is a transition (Γ;P )
µ−−→ (Γ′;P ′) with sub(µ) = p0 and, by Definition

A.5.12 and consistency of Γ, obj(µ) [ s′ ] = s, so Γ o µ drops activeness on s,
rendering (Γ′;P ′) immediately correct. Cases 2 and 3: there is a transition

(Γ0;P )
µ−−→ (Γ′0;P ′) satisfying the requirements in the Lemma statement. Then

(Γ;P )
µ−−→ (Γ′;P ′). Let the local component of Γ′0 be p0A / ε′ : ρ′0. Then the

local component of Γ′ is sA / ε′ : (ρ′0|•) [ s′ ]. As (by induction hypothesis)
wt(ρ′0) < wt(ρ0), wt((ρ′0|•) [ s′ ]) < wt((ρ0|•) [ s′ ]), as required.

Now assume ρ = (l0|ρ0). ρ1 with ρ0 6= •. Let subP (l0) = p0. Then ρ0 is a
runnable strategy for p̄0 and the induction hypothesis applies. Case 1: p̄0 is

at top-level in P ′ so there is a transition (Γ;P )
µ′

−−−→ (Γ′0;P ′0) where µ′ has p̄0

in subject position. Applying the (Com) rule of the LTS the µ′ transition can
be replaced by a τ -transition additionally consuming l0, let that transition be

(Γ;P )
τ−−→ (Γ′;P ′). Then the local component of Γ′ is sA / ε : ρ1. If p̄0 is an

object of the µ′ transition, p̄0A will be provided by the environment and one
can do (after µ′) one labelled transition consuming l0, like in the ρ = s case
above, and again we’re back to the above case.

Case 2 and case 3: Let Γ0 be Γ but with local component p̄0A / ε : ρ0. By

induction hypothesis there is a transition (Γ0;P )
µ−−→ (Γ′0;P ′) as in the Lemma

statement. Let (Γ;P ) =
µ−−→ (Γ′;P ′) be the corresponding transition (i.e. just

like Γ′0 = Γ0 o µ, Γ′ = Γ o µ). The local component of Γ′0 being p0A / ε : ρ′0, we
have sA / ε : (l0|ρ′0). ρ1 as local component of Γ′.

If ρ = (l0|•). ρ1, let (Γ;P )
µ−−→ (Γ′;P ′) be a transition consuming l0. Then

p’s strategy in Γ′ is ρ1, which has a weight lower than ρ. By runnability of ρ
and the definition of the depP operator, p̄0A must provided by the environment.
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The ρ = π̃1 (π̃2)δ case is essentially identical to the above ones, by focusing
on the π̃1 part and leaving the rest unchanged.

2

Soundness of consistency and completeness follows as a simple corollary.

Corollary A.5.31 (Completeness and Correctness) If (Γ;P ) is a consis-
tent and complete annotated typed process, then ran(Γ;P ) satisfies definition
6.4.4 for the special case where µ̃0 is empty.

Proof As µ̃0 is empty, Γ0 ↘ Γ′0, so (Γ0;P0) being consistent and complete
implies (Γ′0;P0) is consistent and complete, and Γ′0 has a weight lower or equal
to that of Γ0.

By repeated application of Lemma A.5.29 on the sequence (Γi;Pi)
µ̃i−−−→↘

(Γ′i;P
′
i ), if (Γi;Pi) is consistent and complete then (Γ′i;P

′
i ) is consistent and

complete as well, and Γ′i has a weight smaller than or equal to wt(Γi).
The strategy f is defined following Lemma A.5.30, producing, for consistent

and complete but not immediately correct typed processes (Γ′i;P
′
i ), transitions

(Γ′i;P
′
i )

µ−−→ (Γi+1;Pi+1), such that wt(Γi) > wt(Γi+1).
For all i < j: wt(Γ′i) > wt(Γ′j). As weight can’t be negative, there is a value

of n as in Definition 6.4.4 on page 41 of at most wt(Γ′0)P ′0 such that i > n
implies (Γi;Pi) is immediately correct. 2

A.5.6 Annotated Type System

Most of the soundness proof now amounts to lifting the type algebra and type
system to work on annotated process types.

So in this section we extend various process type operators to work with
annotated process types and gradually build strategies as a process is being run
through the type system:

1. The relation ↪→, when used to reduce dependency chains, has to combine
the corresponding strategies.

2. The (R-Pre) rule constructs base strategies for the subject activeness and
responsiveness, remote behaviour, and adds a transition at the beginning
of all activeness strategies from the continuation.

The following definition tells how to reduce a sA/ pA/ εp dependency chain:

Definition A.5.32 (Activeness-Activeness Reduction) The reduction re-
lation ↪→ is modifed as follows for annotated process types, in the context of a
process P :

Let Ξ = (pA / εp : ρp) ∧ (sA / (pA ∧ εs) : ρs). Then

Ξ ↪→ Ξ ∧ sA / (εp ∧ εs) : ρ′s

ρ′s is obtained from ρs by replacing as many sub-strategies as possible using the
following rules, that each assume subP (π̃. l) = p̄.

π̃. (l|•). ρ 7→ π̃. (l|ρp). ρ (108)

π̃. (l|•). ρ 7→ π̃. (l|ρp). ρ 
(
π̃. (l|•)

)
. ρ (109)

(•|π̃. l) [ r ] 7→ (ρr|π̃. l) (•|π̃. l) [ r ] (110)
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To reduce chains such as sA/ pR/ εp, one needs to convert a responsiveness
strategy φ on parameter names into an activeness strategy, applying parameter
instantiation to strategies:

Definition A.5.33 (Strategy Instantiation) Let φ be an annotated respon-
siveness strategy and s a sum of parameter ports (n or n̄). Then instantiating
φ’s port(s) s, written φ [ s ] is the logical homomorphism returning behavioural
statements whose atoms are activeness strategies:

• (s′A : ρ) [ s ] = ρ when s = s′

• φ [ s ] = > when no other rules apply.

Extracting an activeness strategy from a responsiveness strategy replaces
the “unspecified” communication partner “•” and parameter number “[ s ]” by
an actual communication partner ρp and an instantiation of its responsiveness
strategy φ [ s ].

Definition A.5.34 (Responsiveness-Activeness Reduction)
Let Ξ = pR / εp : ρp. φ be an annotated behavioural statement for a process

P . Then

Ξ∧ (sA / (pR∧εs) : ρs) ↪→ Ξ∧
(
(sA / (pR∧εs) : ρs)∨ (sA / (εp∧εs) : ρ′s)

)
(111)

where ρ′s is obtained from ρs by repeatedly applying the following transformation
on sub-strategies:

(•|ρ1) [ s′ ] 7→ (•|ρ1) (ρp|ρ1). φ [ s′ ]

The following definition tells how the above reduction rules descend into
responsiveness strategies. We use the logical homomorphism φ 7→ (ρ|•). φ that
maps pA / ε : ρ′ to pA / ε : (ρ|•). ρ′ and pR / ε : ρ′. φ to pR / ε : ((ρ|•). ρ′). φ.

Definition A.5.35 (Responsiveness Reduction) Let Ξ be an annotated de-
pendency statement and φ a responsiveness strategy such that Ξ ∧ (ρ|•). φ ↪→
Ξ ∧ (ρ′|•). φ′ for some φ′. Then

Ξ ∧ (pR / ε : ρ. φ) ↪→ Ξ ∧ (pR / ε′ : ρ′. φ′)

where ε′ is obtained as in Definition 6.3.4.

Gathering the above definitions together we obtain the annotated counter-
part to Definition 6.3.4 on page 35. There are fewer cases because annotated
process types only contain dependency statements on the local side.

Definition A.5.36 (Annotated Dependency Reduction)
The reduction relation ↪→ on annotated behavioural statements is a partial

order relation satisfying

• The reductions as given in Definitions A.5.32, A.5.34 and A.5.35.

• Φ ↪→ Φ′ implies (C[Φ] J ΦE) ↪→ (C[Φ′] J ΦE) for any local context C[·].

The above relation preserves consistency:
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Lemma A.5.37 (Reduction Preserves Consistency) If Φ is a consistent
annotated behavioural statement for a process P and Φ ↪→ Φ′ then Φ′ is consis-
tent as well.

Proof We show that all four transformations (108), (109), (110) and (111) given
in Definitions A.5.32 and A.5.34 preserve runnability.

Note that a strategy of the form s can’t be altered or produced by the rules
because it doesn’t match any of them, on the left or right of the 7→ symbol. So we
only consider sub-strategies of the form π̃. s or π [ s′ ], and show that the label-
guarding property is preserved and subjects of newly introduced (l|ρ)-pairs are
complements, as required. Additionally we show that (sA · · · : ρ) 7→ (sA · · · : ρ′)
implies sub(ρ) = sub(ρ′), i.e. sub(ρ′) = s as is required for consistency.

(108) Calling the “main event sequence” of a strategy (l0|ρ0). (l1|ρ1). · · · . s
the sequence (l0, l1, . . . , s), runnability requires l0 to be at top-level and every
li with i < n to guard li+1 (s in case i = n − 1). That sequence is preserved
by rule (108). Secondly the rule introduces a new pair (l|ρp). sub(π̃. l) = p̄
by side-condition of the rule and sub(ρp) = p by hypothesis, which completes
the runnability proof. As the rule only replaces the ρ-component of a singly-
anchored step and sub doesn’t depend on such components, the subject of the
resulting strategy is unchanged.

(109) As in the previous case the main event sequence is preserved by the
transformation, and the complementarity of l and ρp is shown as in the previous
case. As far as the subject is concerned, sub(π̃ ρ) = sub(ρ), and ρ is the exact
strategy prior to the transformation so we are done.

(110) The left hand side of the  symbol is runnable because both ρp and π̃. l
are runnable, by hypothesis. The subject is preserved because the right hand
side of  is the strategy prior to transformation.

(111) the pR annotated dependency statement being consistent by hypoth-
esis, (ρp|•). φ is consistent, and therefore (ρp|•). φ [ s′ ] is runnable. Replac-
ing that statement by (ρp|ρ0). φ [ s′ ] preserves runnability, as sub(ρ0) = p̄ and
sub(ρp) = p. The subject of the strategy prior to transformation is obj(ρ0) [ s′ ].
The subject of φ [ s′ ] is obj(ρp) [ s′ ], so the subject after transformation is

obj(ρp) [ r ] subst((ρp|ρ0)) = obj(ρp) [ s′ ] {obj(ρ0)/obj(ρp)} = obj(ρ0) [ s′ ]

as required. 2

Lemma A.5.38 (Composition Preserves Consistency) Let Γ1 and Γ2 be
annotated process types consistent for a process P . Then their composition
Γ1 � Γ2 is consistent for P as well.

Proof Following Definition 6.3.11 on page 37:
The first step simply combines into a single behavioural statement strategies

from Γ1 and Γ2. As consistency of a statement is equivalent to runnability of
all activeness strategies it contains, consistency of both ΞLi immediately implies
consistency of ΞL1�ΞL2, except the observability requirement on (ρ|•)-steps, as
sub(ρ) being observable in one Γi doesn’t imply it being observable in Γ1 � Γ2.
Note however that those strategies violating the observability requirement all
declare sub(ρ)A in their dependencies, by consistency of behavioural statements.

The second step performs a number of dependency reductions which, by
Lemma A.5.37, preserve consistency of the strategies, still disregarding the ob-
servability requirement.
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Finally, the third step of Definition 6.3.11 removes statements depending
on non-observable resources, thereby dropping all strategies that violated the
observability requirement, so that Γ1 � Γ2 is consistent, now including the ob-
servability constraints. 2

When the ↪→ relation replaces some strategy ρ0 by ρ, ρ0 is a precursor of
ρ. The two points in the list below respectively model transformations done by
Definitions A.5.32 and A.5.34 on page 113.

Definition A.5.39 (Strategy Precursor) An activeness strategy ρ0 is said
a precursor of a strategy ρ for some process P if ρ can be obtained from ρ0 by
applying zero, one or more times the following transformations, while preserving
the subP (ρ0) = subP (ρ) equality.

• replacing some • by activeness strategies,

• replacing a sub-strategy (•|ρ0) [ q ] by π̃. (l|ρ0). ρ′

As far as completeness is concerned, dependency reduction transforms an
incomplete type into a complete one, as long as responsiveness of every port is
available, and every strategy has a matching precursor with •-steps that can be
used for performing dependency reduction. This is formalised as follows.

Definition A.5.40 (Pre-Completeness) Let Φ be an annotated behavioural
statement, P a process and ρ̃ be a choice set. Φ is said to be pre-complete for
P with respect to ρ̃ if:

• No activeness strategy in Φ is self-contradicting.

• for any runnable activeness strategy ρ not contradicting ρ̃ and such that
subP (ρ) is a free port p, Φ contains a statement pR / ε : ρ0. φ with ρ0 being
a precursor of ρ.

• for every annotated activeness statement pA / ε : ρ2 contained in Φ, for
every runnable precursor ρ1 of ρ2, there is a precursor ρ0 of ρ1 such that
Φ contains a statement pA / ε′ : ρ2 for some ε′.

An annotated behavioural statement
∨
i Φi is pre-complete for P if, for all

choice sets ρ̃ there is i such that Φi is pre-complete for P with respect to ρ̃.

We conjecture completeness implies pre-completeness but it is not needed
for the soundness proof.

As we will see in the annotated type system soundness proof below, if Φ1 and
Φ2 are pre-complete for two processes P1 and P2 then their composition Φ1�Φ2

is pre-complete as well. Recall that composition of behavioural statements, from
Definition 6.3.8 on page 37, does not perform a closure, so there is no similar
result for completeness, but composing and then performing the the closure of
two complete process types gives a complete type:

Lemma A.5.41 (Closure Completes) If Γ is a consistent and pre-complete
type for a process P , then Γ’s closure is complete for P .
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Proof Let P and Γ be as in the statement, let
∨
i∈I Φi be the local component

of close (Γ).
We show by induction on the size of a choice set ρ̃ that ∃i ∈ I s.t. Φi doesn’t

contradict ρ̃, i.e. Φ is complete.
The base case (ρ̃ = ∅) is immediate — if the choice set is empty it can’t

contradict any Φi.
Fix a choice set ρ̃. Let I0 ⊆ I be the set of i such that Φi doesn’t contradict

ρ̃. By induction hypothesis I0 6= ∅. Let ρc be a selection strategy such that
ρ̃∪{ρc} is a choice set according to Definition A.5.20 (i.e. ρc is runnable, doesn’t
contradict any ρ ∈ ρ̃ and all proper sub-strategies of ρc are in ρ̃). We show
that there is a non-empty subset I ′0 ⊆ I0 such that j ∈ I ′0 implies Φj doesn’t
contradict ρc.

Let ı̂ ∈ I0 be such that Φı̂ contradicts ρc, and specifically let (sA/ ε : ρ) � Φı̂
be such that ρ contradicts ρc. If there is no such ı̂ then I ′0 = I0 and we’re done.

As all sub-strategies of ρc are in ρ̃ and ı̂ ∈ I0, Φı̂ doesn’t contradict any
sub-strategy of ρc.

Let ρc = π̃c. (l|ρ̂c). Following Definition A.5.19 there is a sequence of steps
π̃. (l|ρ̂) contained in ρ such that π̃ matches π̃c, and ρ̂ doesn’t match ρ̂c. Let q =
sub(π̃. l). By runnability of ρ (by hypothesis Γ is consistent) and ρc, sub(ρ̂) =
sub(ρ̂c) = q̄ (unless ρ̂ = • or ρ̂c = •).

By pre-completeness of Φ (first point in Definition A.5.40), q̄R / εq : ρq. φq �
Φi where ρq is a precursor of ρ̂c. Moreover (second point in Definition A.5.40),
there is a precursor ρ0 of ρ where (l|•) replaces (l|ρ̂) and such that (sA / ε0 :
ρ0) � Φi.

Applying Definition A.5.34, Φi ↪→ Φi ∨ Φ′i where Φ′i is obtained from Φi by
repeatedly applying the transformations

• π̃. (l|•). ρ2 7→ π̃. (l|•) π̃. (l|ρq). ρ2 and

• (•|π̃. l) [ s′ ] 7→ (•|π̃. l) (ρq|π̃. l). φq [ s′ ].

As ρq is a precursor of ρ̂c, Φ′i ↪→ Φ′i ∨ Φ′′i where Φ′′i is obtained from Φ′i by
further replacing ρq by ρ̂c in the rules above.

As Φ is closed, Φ ∼= Φ ∨ Φ′i ∨ Φ′′i , so there is j ∈ I such that Φj ∼= Φ′′i . As
Φi doesn’t contradict ρ̃ and Φj was obtained from Φi by moving sub-strategies
around, Φj doesn’t contradict ρ̃ either so we have j ∈ I0. By construction Φj
doesn’t contradict ρc, so j ∈ I ′0 and therefore I ′0 can’t be empty. 2

We introduce a few notations used by the annotated type system rules.
Having n(p) = a, “ξp” is ξI if p = a, and ξO if p = ā (This notation is used

in the third statement of the resulting type in (R-Pre)). That behavioural
statement is then applied the logical homomorphism ε : • that annotates every
resource with the vacuous strategy • (for instance (1A∧2A) : • = (1A : •)∧ (2A :
•)).

Strategy prefixing (l|•).Γ applies a logical homomorphism such that π. (sA /

ε : ρ′)
def
= sA / ε : (π. ρ′) and π.Γ

def
= Γ when no other rules apply. This

notation is used in the last statements of the conclusion in (R-Pre).
Finally, Annotated Parameter Instantiation σ[x̃]l is like σ[x̃] but replacing

any (xi)k / ε (resp., (xi)k / ε) by (xi)k / ε : (•|l) [ i ] (resp., (xi)k / ε : (•|l)[ ı ]).
Regarding sums,

(∑
i xi
)
A
/ ε becomes

(∑
i xi
)
A
/ ε : (•|l) [

∑
i i ]

Definition A.5.42 (Annotated Type System)
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∀i :
(
sub(Gi) = {pi}, (Σi; ΦLi J ΞEi) `′ Gili .Pi

)
ΞE �

∧
i ΞEi(

ΞE has concurrent environment pi′
)
⇒ ε = ⊥(∧

i Σi;
(
(
∑
i pi)A / ε :

∑
i li
)
∧
∨
i ΦLi J ΞE

)
`′
∑
iGi

li .Pi
(R-Sum)

Γ `′ P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = ?)⇒ ε = ⊥

σ = 〈σ̃; ξI; ξO〉(
p : σ; J pm ∧ p̄m′

)
�(

; p
#(G)
A / ε : l J

)
�

!if #(G) = ω (νbn(G))
(

(l|•).Γ/ p̄A �
σ̄[x̃]l/ p̄AR �

(; pR / σ[x̃] : l. (ξp : •) J )
)
`′ Gl.P

(R-Pre)

Table 6: Annotated Rules

The Annotated Type System works like the one in Section 6.5 but constructs
strategies for each dependency statement, using the rules from Table 6 (that only
contains the rules that are different from the ones in Table 5).

The following lemma is shown by a trivial structural inductive proof, as the
behaviour of operators with respect to dependencies was not modified:

Lemma A.5.43 (Type System Equivalence) Let (Γ;P ) be a typed process
such that Γ ` P . then there is an annotated typed process (Γ′;P ′) such that
Γ′ `′ P ′ and ran(Γ′;P ′) = (Γ;P ).

Given P and the typing Γ ` P , the annotated form P ′ is done by replacing
every guarded process G.P by Gl.P , where l is the event that was used in the
rule (R-Pre) for that prefix in the derivation for Γ ` P .

Lemma A.5.44 (Annotated Type System Soundness) Let (Γ;P ) be an
annotated typed process such that Γ `′ P . Then (Γ;P ) is consistent and com-
plete.

Proof The proof of the Lemma proceeds by induction on the proof sequence:
Assuming for each rule that the typings in its assumptions are consistent and
complete, we show that the typed process produced by the rule is consistent
and complete as well. Rules (R-Nil) and (R-Res) are trivial, so we focus on
(R-Par), (R-Sum) and (R-Pre).

Consistency of (R-Par) strategies. If a strategy is consistent in Pi then it
is also consistent in P1 |P2, so this case follows directly from Lemma A.5.38

Completeness of (R-Par) strategies. Assume both Γi are complete and
pre-complete for the corresponding Pi. Let P = P1 |P2.

Let
∨
j∈J Φj and

∨
k∈K Φk respectively be the local behavioural statements

of Γ1 and Γ2. As � is a logical homomorphism, the local behavioural statement
of Γ1�Γ2 before the closure operator is applied is given by

∨
j∈J Φj�

∨
k∈K Φk =∨

j∈J,k∈K(Φj � Φk).
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Let ρ̃ be a choice set. As both Γi are pre-complete there are j ∈ J and
k ∈ K such that both Φj and Φk are pre-complete with respect to ρ̃.

We show that the three points in Definition A.5.40 are satisfied by Φ′ =
Φj � Φk with respect to ρ̃:

• As all activeness strategies in Φ′ originate from Φj and Φk which are
pre-complete (wrt. ρ̃) by hypothesis, strategies in Φ′ don’t self-contradict.

• Let ρ = π1. · · · . ln be a strategy with subP (ρ) = p. We construct a
precursor ρ′ of ρ such that subPi(ρ

′) = p for some i ∈ {1, 2}.
Reasoning by induction, for all ρi 6= • there is a ρ′i that is runnable in one
of the Pi

As ρ is runnable ln must either be contained in one of P1 and P2. Assume
it is in P1, the proof for P2 being identical but swapping all 1 and 2.

Let j < n be the largest number such that ρj 6= • and ρ′j is not runnable
in P1 (i.e. it is runnable in P2). If there is no such j we are done.

Otherwise we give a procedure that transforms ρ into a precursor ρ̂ that
is either P1- or P2-runnable, or that is such that j strictly decreases. As
j must be positive and finite, applying this procedure a finite number of
times will result in a P1- or P2-runnable precursor of ρ.

If π′j substitutes p′ = subP1
(π′j+1. · · · . ln) by p (i.e. objP1

(lj) [ q ] = p′ and
objP2

(ρ′j) [ q ] = p for some q) then set ρ̂ = ρ′j [ q ] which is, by hypothesis,
P2-runnable, so we’re done.

In all other cases, ρ′j is not used to compute subP (ρ) and it is safe to
replace ρ′j by • to get ρ̂.

We now have a precursor ρ′ of ρ that is Pi-runnable. So, as by hypothesis
Φj (this is for i = 1, take Φk if i = 2) is pre-complete for Pi with respect
to ρ̃ and therefore contains a statement pR / ε : ρ0. φ where ρ0 is a pre-
cursor of ρ′ (and therefore of ρ as well). By definition of the � operator
on behavioural statements, that exact same statement pR / ε : ρ0. φ is
contained in Φ′ as well, as required.

• Assume Φ′ contains an annotated activeness statement pA / ε : ρ2 and let
ρ1 be a precursor of ρ2. Then, applying � backwards, one of Φi contains
the same statement, and as it is pre-complete with respect to ρ̃, contains
a statement pA / ε′ : ρ0 for some precursor of ρ0. Applying � back, the
same statement pA / ε′ : ρ0 is contained in Φ′, as required.

As this holds for any choice set ρ̃,
∨
j Φj �

∨
k Φk is pre-complete. So, by

Lemma A.5.41 Γ1 � Γ2 is complete.
Consistency of (R-Pre) strategies. The typed process produced by this rule

contains strategies in four places. The “l” strategy of local activeness is trivially
runnable and has dependency>. The local responsiveness strategy only contains
strategies of the form • so it is trivially consistent as well. Strategies of remote
behaviour are all of the form (•|l) [ p ] so they are runnable, and have dependency
p̄A ∧ p̄AR which is equivalent to the declared p̄AR. Finally, for the last factor
(continuation (l|•).Γ/ p̄A), consider a dependency statement qA / ε0 : ρ in Γ.
After prefixing and adding a dependency, it becomes qA / (ε0 ∧ p̄A) : ((l|•). ρ).
•-steps being always runnable, ρ’s runnability is preserved. Then (taking P ′ =
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Gl.P ) depP ′((l|•). ρ) = p̄A ∧ depP ′(ρ) = p̄A ∧ depP (ρ), so depP (ρ) � ε0 (which
holds as Γ is consistent) implies depP ′((l|•). ρ) � (ε0 ∧ p̄A) which is what we
needed. As all components are consistent, by Lemma A.5.38, their composition
also is.

Completeness of (R-Pre) strategies. As the composition of every type factor
will perform a closure it is enough, by Lemma A.5.41, to show that the type
is pre-complete before the closure is performed. Every event in continuation is
provided by the last factor. The subject of G has a strategy provided by the
local responsiveness factor, and its objects have responsiveness provided by the
remote behaviour factor. However please see the note at the end of this section
in case G is replicated.

Consistency of (R-Sum) strategies. The strategies for the individual guards
have length one and are therefore always runnable. The strategies in the compo-
nents of the sum are assumed to be runnable by the premise (Σi; ΦLi J ΞEi) `′
Gi

li .Pi and the induction hypothesis.
Completeness of (R-Sum) strategies. Let ρ̃ be a choice set for the process

P =
∑
i∈I Gi

li .Pi. By the non-contradiction condition, there must be i ∈ I such
that any ρ ∈ ρ̃ is either li or of the form (li|•). ρ0, where ρ0 is a selection strategy

for Pi. Now assume some transition sequence P
µ̃−−→ P ′ does not contradict

ρ̃. Because of the structure of P , the first transition in µ̃ must be a labelled
transition consuming one guard Gi′ , which performs the choice li′ . Since that
transition does not contradict ρ̃, we must have i = i′, so completeness of the
type for that transition sequence and the choice set ρ̃ follows, by the induction

hypothesis, from completeness of ΦLi for the transition sequence Gi
li .Pi

µ̃−−→ P ′

and the choice set ρ̃. 2

The framework introduced until now does not deal with choice guarded by
a replicated prefix (as in ! a(x).(P+Q)). For instance no runnable strategy can
model the sequence

P = !u.(ā+a.s̄)
u−−→ P | (ā+a.s̄)

u−−→ P | (ā+a.s̄) | (ā+a.s̄)
τ−−→ P | s̄

We reserve such an extension for future work and for the time being will merely
sketch a proof that the ! operator (in particular the dependency reductions it
entails) preserves completeness.

Let (Γ0;P0) be an annotated typed process with Γ0 `′ P0. By induction, Γ0

is consistent and complete for P0. We show that (Γ′;Gl.P0), where #(G) = ω
and Γ′ is obtained from Γ0 following (R-Par), is consistent and complete as
well. Let Γ be the type under replication, i.e. the composition of continuation,
remote parameters and responsiveness. Remember (Definition 4.5.3 on page 21)

that ! Γ
def
= Γ� Γ� · · · � Γ with as many instances as there are ∨-terms in Γ’s

local component (multiplied by two to make sure all multiplicities are ? but we
aren’t concerned about multiplicities here). By Γ’s completeness, that number
n of terms is the number of classes of possible choice sets (where two choice sets
are in the same class if the same ∨-term is complete with respect to both of
them). Conversely, to any choice set can be associated a number between 1 and
n.

Now consider a transition sequence Gl.P0 = P
µ̃−−→ P ′. P ′ can be decom-

posed into a product P | (νz̃)
(
P1 |P2 | . . . |Pm

)
where m is the number of

time the G-prefix got invoked and, for all i, P
µ̃i−−−→ P |Pi, for some µ̃i. By
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LTS equivalence, that sequence µ̃i can be converted into a sequence of steps π̃i.
They are necessarily non-contradictory, as they correspond to an actual tran-
sition sequence, therefore form a choice set and have a matching ∨-term ni in
Γ.

Replace every event l occurring in processes in the sequence P
µ̃−−→ P ′ by a

pair (l, ni) where i is the process containing the event. In Γ =
∨
i Γi, similarly

replace, in each Γi, every event l (other than l itself) by the pair (l, i).
This extended framework guarantees the following property: all intermediate

processes in the P -P ′ sequence are of the form P | (νx̃) (P̂1 | P̂2 | . . . | P̂m′) (m′ is
not related in any way to n or m, as G’s continuation P0 may itself be a parallel
composition of processes), such that if an event (l or (l, i)) appears more than
once, it is in two processes P̂j and P̂k with P̂j = P̂k{x̃/̃y} where x̃ and ỹ are

distinct names appearing only in P̂j (respectively, P̂k).
As events paired with a number i all perform the same choices by construc-

tion, there are no contradictory sequences and the closure of Γ2n is complete.

A.5.7 Overall Proof

We may now formulate the proof of the Soundness Proposition as a corollary of
the previous lemma:

Proof of Proposition 7.3.4
Let (Γ;P ) be a (non-annotated) typed process such that Γ ` P .
Let an arbitrary transition sequence

(Γ;P ) = (Γ0;P0)
µ̃0−−−→↘ (Γ′0;P ′0) (112)

By Subject Reduction (Prop. 7.3.2), there is Γ′′0 � Γ′0 such that Γ′′0 ` P ′0.
By the Type System Equivalence there is an annotated typed process (Γ̂′0; P̂ ′0)

such that Γ̂′0 `′ P̂ ′0 and ran(Γ̂′0; P̂ ′0) = (Γ′′0 ;P ′0).
By the annotated type system soundness, Γ̂′0 is consistent and complete for

Q′.

Let (Γ̂′0; P̂ ′0)
f−−→ (Γ̂1; P̂1)

µ̃1−−−→↘ . . . be an arbitrary transition sequence
where the µ̃i satisfy the constraints given in Definition 6.4.4 and f is constructed
as given in the completeness and correctness Lemma. By that same lemma,
(Γ̂n; P̂n) is immediately correct for some n.

By LTS equivalence that transition sequence can be translated into a se-

quence on non-annotated processes (Γ′′0 ;P ′0)
f−−→ (Γ1;P1)

µ̃1−−−→↘ . . . where
(Γi;Pi) = ran(Γ̂i; P̂i) and (Γ′′i ;P ′i ) = ran(Γ̂′i; P̂

′
i ).

Annotation removal preserves immediate correctness so (Γn;Pn) is immedi-
ately correct as well.

As Γ′′0 � Γ′0 there is a similar transition sequence starting from (Γ′0;P ′0) with
equal processes and transitions. As weakening commutes with the transition
operator the nth typed process in that sequence is a weakening of (Γn;Pn) so it
is immediately correct as well. Connecting that transition sequence with (112)
gives a sequence matching the requirements of Definition 6.4.4. As this works
for an arbitrary sequence we get Γ |= P .

2
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