Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Maxime Gamboni

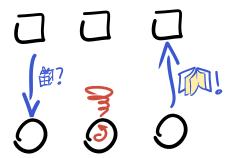
Instituto de Telecomunicações, Instituto Superior Técnico, Portugal

December 17th, 2010

Plan

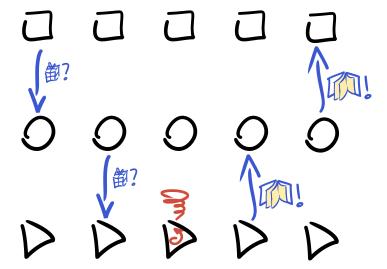
- Statically Proving
- Behavioural Properties
- in the π -calculus
- via Dependency Analysis

Context: Request & Answer



Statically Behavioural π -calculus Dependency

Context: Proxy



Statical vs Dynamical Analysis

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Definition (Model Checking)

Finding Properties by simulating execution

Definition (Statical Analysis)

Finding Properties without running the program

Statical vs Dynamical Analysis

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Definition (Model Checking)

Finding Properties by simulating execution

Definition (Statical Analysis)

Finding Properties without running the program

Statical vs Dynamical Analysis

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Definition (Model Checking)

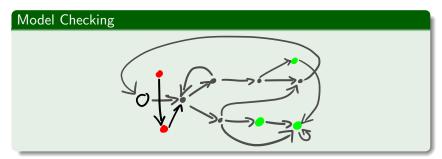
Finding Properties by simulating execution

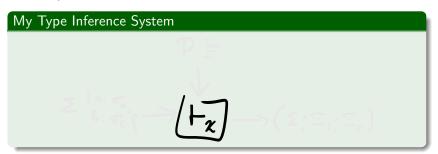
Definition (Statical Analysis)

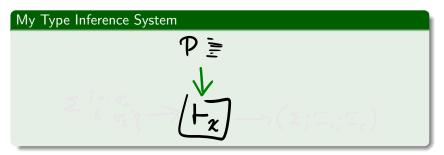
Finding Properties without running the program

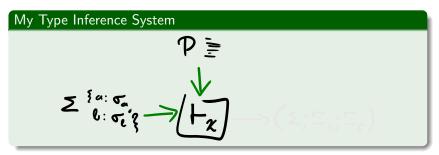
Model Checking

Finding/Verifying properties by simulating execution









Behavioural Properties

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Examples

- Activeness (Receptiveness)
- Isolation

Behavioural Properties

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Examples

- Activeness (Receptiveness)
- Isolation

Behavioural Properties

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Examples

- Activeness (Receptiveness)
- Isolation

Behavioural Properties: Existential vs Universal

Definition (Existential Property)

Available somewhere. Good things happen eventually.

e.g. "Activeness"

Definition (Universal Property)

Available everywhere. Good things happen constantly.

e.g. "Isolation"

Behavioural Properties: Existential vs Universal

Definition (Existential Property)

Available *somewhere*. Good things happen *eventually*.

e.g. "Activeness"

Definition (Universal Property)

Available everywhere. Good things happen constantly.

e.g. "Isolation"

The π -calculus

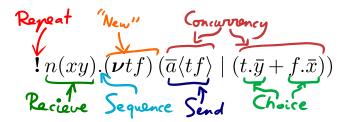
Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Repeat "New" Concurrency
$$n(xy).(vtf)(\overline{a}\langle tf\rangle \mid (t.\overline{y}+f.\overline{x}))$$
 Recieve Sequence Send Choice

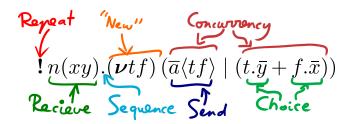
The π -calculus

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Behavioural



The π -calculus



Example

$$\bigcirc (qr).\overline{\triangledown}\langle qr'\rangle.r'(a).\overline{r}\langle a\rangle$$

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Definition (Dependency $A \triangleleft B$)

If you give me B, I'll give you A.

$$(\bigcirc_{\mathbf{I}}) \lhd (\nabla_{\mathbf{I}})$$

Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis

Definition (Dependency $A \triangleleft B$)

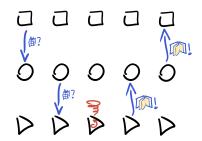
If you give me B, I'll give you A.

is Isolated if ∇ is Isolated

$$(\bigcirc_{\mathbf{I}}) \lhd (\nabla_{\mathbf{I}})$$

Definition (Dependency $A \triangleleft B$)

If you give me B, I'll give you A.



is Isolated if ∇ is Isolated

$$(\bigcirc_{\mathbf{I}}) \lhd (\nabla_{\mathbf{I}})$$

Definition (Dependency $A \triangleleft B$)

If you give me B, I'll give you A.



 \bigcirc is Isolated if \triangledown is Isolated

$$(\bigcirc_{\mathbf{I}}) \lhd (\nabla_{\mathbf{I}})$$

Not specific to a property

Instantiation

- Write semantic goals
- Rules parametrised by elementary rules

Not specific to a property

Instantiation:

- Write semantic goals
- Rules parametrised by elementary rules

Not specific to a property

Instantiation:

- Write semantic goals
- Rules parametrised by elementary rules

Not specific to a property

Instantiation:

- Write semantic goals
- Rules parametrised by elementary rules

Contributions

Type Language	Process Behaviour
Selection & Branching $A \vee B$, μ	p + q Choice
Activeness	p _A Liveness
Determinism, Isolation, p_D , p_I	, Safety
Dependencies A	A⊲ B Causality

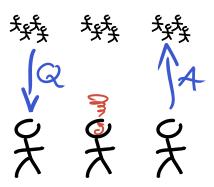
Generic Type System:

- Decidable
- Constructs Logical Formulæ
- Sound
- Compositional

Conclusion

"Statically Proving Behavioural Properties in the π -calculus via Dependency Analysis"

Questions



Supplementary Material

Types & Multiplicities
Choice
Algebra
Semantics
Type Systems
Properties
Soundness
Future Work

Types & Multiplicities

Behavioural Statements Δ , Ξ , ...

Δ ::=

$$\Delta \vee \Delta \quad | \quad \Delta + \Delta \quad | \quad \Delta \wedge \Delta \quad | \quad \Delta \lhd \Delta \quad | \quad p_k \quad | \quad \bot \quad | \quad \top \quad | \quad p^m$$

Multiplicities

$$m ::= 0 \mid 1 \mid \omega \mid \rightarrow$$

Choice

Definition (Selection $A \vee B$)

I will either behave like A or like E

Definition (Branching A + B)

You can make me do A or F

Statically Behavioural π -calculus Dependency

Choice

Definition (Selection $A \vee B$)

I will either behave like A or like B

Definition (Branching A + B)

You can make me do A or F

Statically Behavioural π -calculus Dependency

Choice

Definition (Selection $A \vee B$)

I will either behave like A or like B

Definition (Branching A + B)

You can make me do A or B

Choice Examples (I)

Data Encodings

$$b := \mathsf{True} \quad \stackrel{\mathsf{def}}{=} \quad ! \ b(tf).\overline{t}$$

$$b := \mathsf{False} \quad \stackrel{\mathsf{def}}{=} \quad ! \ b(tf).\overline{f}$$

$$\bullet - b(tf) \bullet \bullet - b(tf) \bullet \bullet \bullet$$
 If b Then P Else $Q \quad \stackrel{\mathsf{def}}{=} \quad \overline{b}(\nu tf).(t.P+f.Q)$

Choice Examples (II)

Client-Server Conversations

$$\overline{prod}(\nu s).s(more, done).\overline{more}(\nu s, 2).$$

$$s(more, done).\overline{more}(\nu s, 5).$$

$$s(more, done).\overline{done}(\nu s).s(x).\overline{print}\langle x\rangle$$

$$s(more, done)$$

$$done(s)$$

$$more(s, n)$$

!
$$prod(s).\overline{p_0}\langle 1, s \rangle$$
 | ! $p_0(t, s).\overline{s}(\nu more, done)$.
 $\left(more(s, n).\overline{p_0}\langle t \times n, s \rangle + done(s).\overline{s}\langle r \rangle\right)$

Algebra

Spatial Operators

Parallel Composition $\Gamma_1 \odot \Gamma_2$, Restriction $(\nu x) \Gamma$, ...

Logical Operators

Equivalence \cong , Weakening \leq , Reduction \hookrightarrow , ...

Dynamic Operator

Transition Operator $\Gamma \xrightarrow{\mu} (\Gamma \wr \mu)$.

Semantics (Universal)

Definition (Universal Semantics)

A $(\Gamma; P)$ typed process is *correct wrt. universal semantics* $(\ ^{"}\Gamma \models_{\mathcal{U}} P")$ if, for all transition sequences $(\Gamma; P) \xrightarrow{\tilde{\mu}} \searrow (\Gamma'; P')$, the local component of Γ' being $\bigvee_{i \in I} p_{i \, k_i} \lhd \varepsilon_i$: for all $i \in I$ with $k_i \in \mathcal{U}$, $\operatorname{good}_{k_i}(p_i \lhd \varepsilon_i, (\Gamma'; P'))$ holds.

Semantics (Existential)

(Abbreviated) Existential Semantics

A typed process $(\Gamma; P)$ is *correct* $("\Gamma \models P")$, if \exists a strategy f s.t. For any sequence

$$(\Gamma; P) = (\Gamma_0; P_0) \cdots \xrightarrow{\tilde{\mu}_i} \searrow (\Gamma'_i; P'_i) \xrightarrow{f} (\Gamma_{i+1}; P_{i+1}) \cdots, \text{ let (for all } i) \ \mu_i \text{ be the label of } (\Gamma'_i; P'_i) \xrightarrow{f} (\Gamma_{i+1}; P_{i+1}).$$

Then \exists a resource p_k and $n \ge 0$ such that:

- $\exists \varepsilon : (p_k \lhd \varepsilon) \leq \Gamma_n \text{ and } good_k(p \lhd \varepsilon, (\Gamma_n; P_n)).$

Type System (Universal)

$$\frac{\forall i : \Gamma_{i} \vdash_{\mathcal{K}} P_{i}}{\Gamma_{1} \odot \Gamma_{2} \vdash_{\mathcal{K}} P_{1} \mid P_{2}} \text{ (U-PAR)} \qquad \frac{\Gamma \vdash_{\mathcal{K}} P \qquad \Gamma(x) = \sigma}{(\nu x) \Gamma \vdash_{\mathcal{K}} (\nu x : \sigma) P} \text{ (U-RES)}$$

$$\frac{\forall i : (\Sigma_{i}; \Xi_{Li} \blacktriangleleft \Xi_{Ei}) \vdash_{\mathcal{K}} G_{i}.P_{i}}{\Xi_{E} \leq \bigwedge_{i} \Xi_{Ei}}$$

$$\frac{(\bigwedge_{i} \Sigma_{i}; \bigwedge_{k \in \mathcal{K}} \text{sum}_{k}(\{p_{i}\}_{i}, \Xi_{E}) \land \bigvee_{i} \Xi_{Li} \blacktriangleleft \Xi_{E}) \vdash_{\mathcal{K}} \sum_{i} G_{i}.P_{i}} \text{ (U-Sum)}$$

$$\frac{\Gamma \vdash_{\mathcal{K}} P \quad \text{sub}(G) = p \quad \text{obj}(G) = \tilde{x}}{(p : \sigma; \blacktriangleleft p^{m} \land \bar{p}^{m'})} \odot (p : \sigma; \blacktriangleleft p^{m} \land \bar{p}^{m'})} \odot (p : \sigma; \blacktriangleleft p^{m} \land \bar{p}^{m'}) \odot (p : \sigma; \blacktriangleleft p^{m} \land \bar{p}^{m'})} \odot (p : \sigma; A_{i} \neq 0) (p : \sigma;$$

$$\frac{\forall i : \Gamma_{i} \vdash_{\mathcal{K}} P_{i}}{\Gamma_{1} \odot \Gamma_{2} \vdash_{\mathcal{K}} P_{1} \mid P_{2}} \text{ (E-PAR)} \qquad \frac{\Gamma \vdash_{\mathcal{K}} P \qquad \Gamma(x) = \sigma}{(\nu x) \Gamma \vdash_{\mathcal{K}} (\nu x : \sigma) P} \text{ (E-RES)}$$

$$\frac{\forall i : (\Sigma_{i}; \Xi_{Li} \blacktriangleleft \Xi_{Ei}) \vdash_{\mathcal{K}} G_{i}.P_{i}}{\Xi_{E} \leq \bigwedge_{i} \Xi_{Ei}}$$

$$\frac{\Xi_{E} \leq \bigwedge_{i} \Xi_{Ei}}{(\bigwedge_{i} \Sigma_{i}; \bigwedge_{k \in \mathcal{K}} \text{sum}_{k}(\{p_{i}\}_{i}, \Xi_{E}) \land \bigvee_{i} \Xi_{Li} \blacktriangleleft \Xi_{E}) \vdash_{\mathcal{K}} \sum_{i} G_{i}.P_{i}} \text{ (E-SUM)}$$

$$\frac{\Gamma \vdash_{\mathcal{K}} P \quad \text{sub}(G) = p \quad \text{obj}(G) = \tilde{x}}{(p : \sigma; \blacktriangleleft p^{m} \land \bar{p}^{m'}) \odot}$$

$$(; p^{\#(G)} \blacktriangleleft) \quad \odot$$

$$!_{\text{if } \#(G) = \omega} (\nu \text{bn}(G)) \left(\Gamma \lhd \text{dep}_{\mathcal{K}}(G) \odot \odot \overline{\rho}_{E} \right)$$

$$\exists \text{dep}_{\mathcal{K}}(G) \land \bar{p}_{E}) \quad \odot$$

$$(; \bigwedge_{k \in \mathcal{K}} \text{prop}_{k}(\sigma, G, m, m') \blacktriangleleft) \right) \vdash_{\mathcal{K}} G.P$$

A — Activeness

$$\mathsf{prop}_{\mathbf{A}}(G, \sigma, m, m') = \begin{cases} \mathsf{sub}(G)_{\mathbf{A}} & \text{if } \#(G) = \omega \text{ or } m' \neq \star \\ \top & \text{otherwise} \end{cases}$$

- R Responsiveness
- D Determinism (Functionality)
- I Isolation
- df Lock-Freedom
- N Non-Reachability

- A Activeness
- **R** Responsiveness

$$\mathsf{prop}_{\mathbf{R}}(\sigma, G, m, m') = \mathsf{sub}(G)_{\mathbf{R}^{\triangleleft d}} \begin{cases} \sigma[\mathsf{obj}(G)] & \text{if } G \text{ is an input} \\ \overline{\sigma}[\mathsf{obj}(G)] & \text{if } G \text{ is an output} \end{cases}$$

- D Determinism (Functionality)
- I Isolation
- df Lock-Freedom
- N Non-Reachability

- A Activeness
- R Responsiveness
- D Determinism (Functionality)

$$\varphi_{\mathbf{D}}(\sigma, G, m, m') \stackrel{\text{def}}{=} \begin{cases} \frac{\bot}{\mathsf{sub}(G)_{\mathbf{D}}} & \text{if } \star \in \{m, m'\} \text{ and } \omega \notin \{m, m'\} \end{cases}$$

$$\varphi_{\mathbf{D}}(\{p_i\}_i, \Xi) \stackrel{\mathsf{def}}{=} \begin{cases}
\bot & \mathsf{if } \Xi \mathsf{ has concurrent environment } p_i \\
\top & \mathsf{otherwise}
\end{cases}$$

- I Isolation
- df Lock-Freedom
- N Non-Reachability

- A Activeness
- R Responsiveness
- **D** Determinism (Functionality)
- I Isolation

$$\varphi_{\mathbf{I}}(\sigma, G, m, m') = \overline{\mathsf{sub}(G)}_{\mathbf{I}}$$

- df Lock-Freedom
- N Non-Reachability
- ϖ Termination

- A Activeness
- R Responsiveness
- **D** Determinism (Functionality)
- I Isolation
- **df** Lock-Freedom

$$\operatorname{prop}_{\operatorname{\mathbf{df}}}(G, \sigma, m, m') = \operatorname{proc}_{\operatorname{\mathbf{df}}} \lhd \overline{\operatorname{sub}(G)}_{\operatorname{\mathbf{A}}}$$

- N Non-Reachability
- ϖ Termination

- A Activeness
- R Responsiveness
- **D** Determinism (Functionality)
- I Isolation
- df Lock-Freedom
- N Non-Reachability

$$\mathsf{prop}_{\mathbf{N}}(G, \sigma, m, m') \stackrel{\mathsf{def}}{=} \mathsf{sub}(G)_{\mathbf{N}} \lhd \bot$$

- A Activeness
- R Responsiveness
- **D** Determinism (Functionality)
- I Isolation
- df Lock-Freedom
- N Non-Reachability

$$\operatorname{prop}_{\mathbf{N}}(G, \sigma, m, m') \stackrel{\mathsf{def}}{=} \operatorname{sub}(G)_{\mathbf{N}} \operatorname{\triangleleft} \bot \wedge \tau_{\mathbf{N}} \operatorname{\triangleleft} \overline{\operatorname{sub}(G)}_{\mathbf{N}}$$

- Based on transition sequences?
 Semantic Predicates aren't transition based
- Based on contextual semantics? " $\Delta_1 \lhd \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P \mid Q .$ " The definition is circular!
- Implicit definition?
 "The set of correct typed processes is the largest that satisfies the above"

- Stricter implicit definition?
 "The set of correct typed processes is the intersection of all those that satisfy the above"
 The intersection is empty!
- To be continued

- Based on transition sequences?
 Semantic Predicates aren't transition based!
- Based on contextual semantics? " $\Delta_1 \lhd \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P \mid Q .$ " The definition is circular!
- Implicit definition?
 - "The set of correct typed processes is the largest that satisfies the above"

- Stricter implicit definition?
 "The set of correct typed processes is the intersection of al those that satisfy the above"
 The intersection is empty!
- To be continued

- Based on transition sequences?
 Semantic Predicates aren't transition based!
- Based on contextual semantics? " $\Delta_1 \lhd \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P \mid Q .$ " The definition is circular!
- Implicit definition?
 "The set of correct typed processes is the largest that satisfies the above"

- Stricter implicit definition?
 "The set of correct typed processes is the intersection of all those that satisfy the above"
 The intersection is empty!
- To be continued . . .

- Based on transition sequences?
 Semantic Predicates aren't transition based!
- Based on contextual semantics? " $\Delta_1 \lhd \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P \mid Q .$ "

 The definition is circular!
- Implicit definition?
 - "The set of correct typed processes is the largest that satisfies the above"

- Stricter implicit definition?
 "The set of correct typed processes is the intersection of all those that satisfy the above"
 The intersection is empty!
- To be continued . . .

- Based on transition sequences?
 Semantic Predicates aren't transition based!
- Based on contextual semantics? " $\Delta_1 \lhd \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P \mid Q .$ "

 The definition is circular!
- Implicit definition?
 "The set of correct typed processes is the largest that satisfies the above"
 - There are many solutions!
- Stricter implicit definition?
 "The set of correct typed processes is the intersection of all those that satisfy the above"
 The intersection is empty!
 - To be continued ...

- Based on transition sequences?
 Semantic Predicates aren't transition based!
- Based on contextual semantics? " $\Delta_1 \lhd \Delta_2 \models P \text{ if } \forall Q \text{ s.t. } \Delta_2 \vdash Q : \Delta_1 \models P \mid Q .$ "

 The definition is circular!
- Implicit definition?
 "The set of correct typed processes is the largest that satisfies the above"

There are many solutions!

Stricter implicit definition?
 "The set of correct typed processes is the intersection of all those that satisfy the above"
 The intersection is empty!

To be continued

Existential Soundness

Structural Liveness Strategies

$$\rho ::= \pi\delta \quad | \quad \mathfrak{l} \quad | \quad \cdots$$

$$\delta ::= \div \rho \quad | \quad [s]$$

$$\pi ::= (\mathfrak{l}|\rho) \quad | \quad (\mathfrak{l}|\bullet) \quad | \quad (\bullet|\rho)$$

$$s ::= p_1 + p_2 + p_3 \dots$$

I: Guard reference

•: Environment

 $(\mathfrak{l}|\rho)$: Make \mathfrak{l} and ρ communicate.

Future Work

- Generic Universal Soundness Proof
- Recursivity and Bounded Channels.
- Channel Type Reconstruction.
- Software Implementation.

 π -calculus

Behavioural

► Link to Appendices

Statically

Dependency