Behavioural Type Systems
Algorithms Analysing Algorithms

Dr. Maxime Gamboni

Instituto de Telecomunicagdes, Instituto Superior Técnico, Portugal

December 5, 2011

@ Behavioural

@ Type Systems:
o Algorithms Analysing
o Algorithms

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Behavioural Properties

“Behavioural Type Systems: Algorithms Analysing Algorithms”

public PType prod(PType that) throws IllegalArgumentExcep
Map n = Tools.union(this.names,that.names);
Map nli = new HashMap(), // new local inputs
nlo = new HashMap(), // new local outputs
nri = new HashMap(), // new remote inputs
nro = new HashMap(); // you probably got the idea by

Mult al,ar,bl,br,m; // names as in Mult.radd
for (Iterator i = n.keySet().iterator();i.hasNext();) {
Var v = (Var)i.next();
al = this.getMult(true, v,true);
ar = this.getMult(false,v,true);
bl = that.getMult(true, v,true);

e 4l 4 WMo /c_ N . oa .\
Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Behavioural Properties

“Behavioural Type Systems: Algorithms Analysing Algorithms”

public PType prod(RType that) throws IllegalArgumentExcep
Map n = Tools.union(this.names,that.names);
Map nli = new HashMap(), // new local inputs
nlo = new HashMap(), // new local outputs
nri = new HashMap(), // new remote inputs
nro = new HashMap(); // you probably got the idea by

Mult al,ar,bl,br,m; // names as in Mult.radd

for (Lterator i = n.keySet().iterator();i.hasNext();) {
Var v = Vaz .next();

al = this.getMult(true, v,true);
ar = this.getMult(false,v,true);
bl = that.getMult(true, v,true);

e 4l 4 WMo /c_ N . oa .\
Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Behavioural Properties

“Behavioural Type Systems: Algorithms Analysing Algorithms”

public PType prod(PType that) throws throws ITllegalArgumentExcep
Map n = Tools.union(this.name®,that. namesr, -
Map nli = new HashMap(), // new local inputs
nlo = new HashMap(), // new local outputs
nri = new HashMap(), // new remote inputs
nro = new HashMap(); // you probably got the idea by

Mult al,ar,bl,br,m; // names as in Mult.radd
for (Iterator i = n.keySet().iterator();i.hasNext();) {
Var v. = (Var)i.next();
al = this.getMult(true, v,true);
ar = this.getMult(false,v,true);
bl = that.getMult(true, v,true);

e 4l 4 WMo /c_ N . oa .\
Dr. Maxime Gamboni Behavioural Type Systems

o Deadlock-freedom

@ Termination
@ Isolation

@ Determinism

Behavioural Properties Type Systems Process Calculi Dependency Analysis

Determinism Examples

Deterministic System: Coffee Machine

4/
S\a J.ﬁ‘l

% R
g 7

Cw

v

Dr. Maxime Gamboni Behavioural Type Systems

Generic Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Determinism Examples

Deterministic System: Coffee Machine
ey, y)
% S\.Jan‘

(4 Y
—_ Y No aille’
g
o
Non-Deterministic System: Printer

@ Filesthinr /,?4!‘" Jaun

Dr. Maxime Gamboni Behavioural Type Systems

“Behavioural Type Systems: Algorithms Analysing Algorithms”

Who provides the types?
e Type Checking: The programmer
@ Type Inference: The type system
When to type?
e Static Analysis: "Compile time”

@ Dynamic Checking: Run time

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Behavioural Types

“Behavioural Type Systems: Algorithms Analysing Algorithms”

Who provides the types?
@ Type Checking: The programmer
@ Type Inference: The type system

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Behavioural Types

“Behavioural Type Systems: Algorithms Analysing Algorithms”

Who provides the types?
@ Type Checking: The programmer
@ Type Inference: The type system
When to type?
@ Static Analysis: “Compile time”

@ Dynamic Checking: Run time

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Type Systems

Finding/Verifying properties without running the program

My Type Inference System

.

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis

Type Systems

Generic Type Systems

Finding/Verifying properties without running the program
My Type Inference System

P=
&

Dr. Maxime Gamboni

Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Type Systems

Finding/Verifying properties without running the program

My Type Inference System

P=

2 —»@

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Type Systems

Finding/Verifying properties without running the program

My Type Inference System

'P‘.s

'»qg 7U —(3;=,:<,)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Process Calculi

“Behavioural Type Systems: Algorithms Analysing Algorithms”

The m-calculus: a tiny concurrent “programming language”.

Qﬁr‘“ “+ /,Nuv Co‘h mrwmcj

'n xy
reﬂ-cuzu{ SQT«QMCC Su d g-ﬁﬁuce

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems
Dependency Analysis (1)
“Behavioural Type Systems: Algorithms Analysing Algorithms”

@ Parallel composition fundamental to the m-calculus

P=Py|Py| ... |Pp

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems
Dependency Analysis (1)
“Behavioural Type Systems: Algorithms Analysing Algorithms”

@ Parallel composition fundamental to the m-calculus

P=Py|Py| ... |Pp

@ Need to analyse one component at a time
{fi-P}—>THr P

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems
Dependency Analysis (1)
“Behavioural Type Systems: Algorithms Analysing Algorithms”

@ Parallel composition fundamental to the m-calculus

P=Py|Py| ... |Pp

@ Need to analyse one component at a time
{fi-P}—>THr P

@ Need to make assumptions on the environment

M= (ZL«=E)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Dependency Analysis (2)

Definition (Behavioural Statements)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b(wt'f).(t' c{tF)+f.f)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b(wt'f).(t' c{tF)+f.f)
! .t

bo<T + B = !b(tf)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b(wt'f).(t' c{tF)+f".f)
bp<T + B = b(tf)T
bp<l € =tc(tf).((vq)q|qt]|q.f)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b
bp<T + B = lb(tf).t
bp<l + C = 1c(tf).((vq)q|q.t|q.f)

ap< (T Acp)xap<icp + A|B

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b
bp<T + B = lb(tf).t
bp<l + C = 1c(tf).((vq)q|q.t|q.f)

ap<(T Acp)=xap<cp + A|B
aD<1(bD/\J_);aD<1J_ [A|C

Dr. Maxime Gamboni Behavioural Type Systems

Captures the essence of dependency analysis
Can be instantiated:

o Write semantic goals

@ Rules parametrised by elementary rules

Behavioural Properties Type Systems Process Calculi Dependency Analysis

Generic Type Systems

Captures the essence of dependency analysis
Can be instantiated:

o Write semantic goals

Dr. Maxime Gamboni Behavioural Type Systems

Generic Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis

Generic Type Systems

Captures the essence of dependency analysis
Can be instantiated:

o Write semantic goals

@ Rules parametrised by elementary rules

Dr. Maxime Gamboni Behavioural Type Systems

Generic Type Systems

®

()

[

[

[

Behavioural Properties

Type Inference Systems: Find properties automatically
The m-calculus: A simple programming language
Dependency Analysis: Reusable types for reusable code

Generic Type Systems: Write an elementary rule, get a type
system for free

o

]

o

[

Behavioural Properties

Type Inference Systems: Find properties automatically
The m-calculus: A simple programming language
Dependency Analysis: Reusable types for reusable code

Generic Type Systems: Write an elementary rule, get a type
system for free

@ Behavioural Properties

@ Type Inference Systems: Find properties automatically
@ The m-calculus: A simple programming language

@ Dependency Analysis: Reusable types for reusable code

(7]

Generic Type Systems: Write an elementary rule, get a type
system for free

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Summary

@ Behavioural Properties
@ Type Inference Systems: Find properties automatically

@ The m-calculus: A simple programming language

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Summary

Behavioural Properties
Type Inference Systems: Find properties automatically

The m-calculus: A simple programming language

Dependency Analysis: Reusable types for reusable code

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Summary

Behavioural Properties
Type Inference Systems: Find properties automatically
The m-calculus: A simple programming language

Dependency Analysis: Reusable types for reusable code

Generic Type Systems: Write an elementary rule, get a type
system for free

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Thank You

Answers to questions are non-isolated, non-deterministic,
non-uniform, active, responsive, deadlock-free, and terminate.

Dr. Maxime Gamboni Behavioural Type Systems

» Properties

» Future Work

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Types & Multiplicities

Behavioural Statements A, =, ...

A =
AVA‘A+A‘A/\A‘A<1A‘pk‘J_‘T‘p’"
m::=0|1|w|*

Dr. Maxime Gamboni Behavioural Type Systems

Definition (Selection A v B)
| will either behave like A or like B

A

§

Definition (Branching A + B)

You can make me do A or B

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Choice

Definition (Selection A v B)

| will either behave like A or like B

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Choice

Definition (Selection A v B)

| will either behave like A or like B

Definition (Branching A + B)

You can make me do A or B

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Choice Examples (1)

e Data Encodings

b:=True % 1p(tF).2
b:=False % 1p(tf).f
—_—
o—b(tF)ou’%;
e
If bThen PElse @ % B(wtf).(t.P+£.Q)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Choice Examples (II)

@ Client-Server Conversations

prod(vs).s(more, done).more(vs, 2).

s(more, done).more(vs,5).

s(more, done).done(vs).s(x).print(x)
/5(more, done)

F\more(s.)=+

I prod(s).po{1,s) | !pol(t,s).s(vmore, done).
(more(s, n).po(t x n, sy + done(s).s(r))

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Algebra

Spatial Operators

Parallel Composition 'y ® 2, Restriction (vx) T, ...

Logical Operators

Equivalence =, Weakening <, Reduction —, ...

Dynamic Operator

Transition Operator I —— (Fw).

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Semantics (Universal)

Definition (Universal Semantics)

A (T; P) typed process is correct wrt. universal semantics

(“I =y P") if, for all transition sequences (I'; P) i)\ (r'; P,
the local component of I being \/;¢; pix, < €;: for all i € | with
ki € U, good,.(pi< &j, (I"; P')) holds.

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Semantics (Existential)

(Abbreviated) Existential Semantics

A typed process (I'; P) is correct (“I' = P"), if 3 a strategy f s.t.
For any sequence

(T P) = (To; Py) - - - L\ (' Pl LN (Fig1; Pig1) -+, let (for
all i) 11; be the label of (I P) — (Fiy1; Pir1).
Then 3 a resource px and n = 0 such that:

@ Vi: (pk=dep(m)) <T;

@ de: (pk<e) < T, and good, (p<e, (Ip; Pn)).

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Type System (Universal)

Vi:Ti b P M P r(X) =0

U-PAR U-REs
F1®F2 l_)C P1|P2 () (I/X)r I—Kj (UXZO')P ()
Vi: (%=L« =gi) Fr Gi.P;
=g < TR
< AiZe (U-Suwm)

(A Zis Asexc sume({piti.Ze) A V,;ZLi«ZE) Fi X Gi.Pi
' P sub(G)=p obj(G) =%

- (U-PRE)
(p:o; <p’"/\b’”)

() <)

lit #(6) = w (¥bn(G)) (r

(]

(; Akex Propi(o, G, m, m’) «)) Fxc G.P

©
©
O]
©

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Type System (Existential)

Vi:li b Pi Tk P T(x)=0
E-PaAr
Mol ke PP () (wx)T +x (vx:0)P

(E-RES)

Vi: (X =i« Zgi) Fx Gi.P;

=g < /\iEEi

(/\i i /\kEIC sumk({p,-},-7EE) A \/,‘ELI < EE) i Zi G,'.P,'
N P sub(G) =p obj(G) =%

(P Lo« p™ A f’ml)
(p#©)
i 4(6) = (1B0(G)) (T depc(6)
G[X]< (depx(G) A pr)
(; /\kelC propk(Uv G7 m, m/) <)) i G.P

(E-Sum)

(E-PRE)

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties

@ A — Activeness

sub(G)a if #(G)=w or m' #

prop G7 0-7 m? ml = .
Al) T otherwise

R — Responsiveness

D — Determinism (Functionality)
I — Isolation

df — Lock-Freedom

N — Non-Reachability

w — Termination

e 6 6 6 o o

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties
@ A — Activeness
@ R — Responsiveness
bj(G if Gi input
propR(, G, m) = sub(G)ge | 7O TG s anine
alobj(G)] if G is an output
@ D — Determinism (Functionality)
@ | — Isolation
o df — Lock-Freedom
@ N — Non-Reachability
@ w — Termination

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties

@ A — Activeness

@ R — Responsiveness

@ D — Determinism (Functionality)

def L if xe{m m'} and w¢ {m m'}

o,G,mm) = {____
2o) sub(G)p otherwise

_. def } L if =has concurrent environment p;
eo({pi}i,Z) = .
T otherwise
| — Isolation
df — Lock-Freedom
N — Non-Reachability
w — Termination

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties

A — Activeness

°

@ R — Responsiveness

@ D — Determinism (Functionality)
°

| — Isolation

ng(U: G7 m, ml) = SUb(G)I
df — Lock-Freedom
N — Non-Reachability

o — Termination

(]

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties

@ A — Activeness
@ R — Responsiveness
@ D — Determinism (Functionality)
@ | — Isolation
o df — Lock-Freedom
propgs(G, o, m, m/) = ProcCygs=d SUb(G)A
@ N — Non-Reachability
@ w — Termination

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties
@ A — Activeness
@ R — Responsiveness
@ D — Determinism (Functionality)
o | — Isolation
o df — Lock-Freedom
@ N — Non-Reachability

propn (G, o, m, m’) def sub(G)n< L

w — Termination

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Properties

A — Activeness

R — Responsiveness

D — Determinism (Functionality)
I — Isolation

df — Lock-Freedom

N — Non-Reachability

w — Termination

e 6 6 6 o6 o o

propn (G, o, m, m') def sub(G)n< L A Tn<1sub(G)y

Dr. Maxime Gamboni Behavioural Type Systems

Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

Based on contextual semantics?

“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q

The definition is circular!

Implicit definition?

“The set of correct typed processes is the largest that satisfies
the above”

There are many solutions!

Stricter implicit definition?

“The set of correct typed processes is the intersection of all
those that satisfy the above”

The intersection is empty!

To be continued . ..

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q

@ Implicit definition?
“The set of correct typed processes is the largest that satisfies
the above”

@ Stricter implicit definition?
“The set of correct typed processes is the intersection of all
those that satisfy the above”

@ To be continued . ..

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Universal Soundness

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q
The definition is circular!

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Universal Soundness

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)
@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q
The definition is circular!
@ Implicit definition?
“The set of correct typed processes is the largest that satisfies
the above”
There are many solutions!

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Universal Soundness

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q
The definition is circular!
@ Implicit definition?
“The set of correct typed processes is the largest that satisfies
the above”
There are many solutions!
@ Stricter implicit definition?
“The set of correct typed processes is the intersection of all
those that satisfy the above”
The intersection is empty!

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Universal Soundness

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q
The definition is circular!
@ Implicit definition?
“The set of correct typed processes is the largest that satisfies
the above”
There are many solutions!
@ Stricter implicit definition?
“The set of correct typed processes is the intersection of all
those that satisfy the above”
The intersection is empty!
@ To be continued ...

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Existential Soundness

Structural Liveness Strategies

p = mo ‘ [‘

§ == +p | [s]
mou=(lp) | (e) | (olp)
S = p1t+p2+p3...

[: Guard reference
e: Environment
([|p): Make I and p communicate.

Dr. Maxime Gamboni Behavioural Type Systems

Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Future Work

Generic Universal Soundness Proof
Recursivity and Bounded Channels.

Channel Type Reconstruction.

e 6 o6 o

Software Implementation.

Dr. Maxime Gamboni Behavioural Type Systems

» Link to Appendices

	Behavioural Properties
	Type Systems
	Process Calculi
	Dependency Analysis
	Generic Type Systems

