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@ Behavioural

@ Type Systems:
o Algorithms Analysing
o Algorithms
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Behavioural Properties

“Behavioural Type Systems: Algorithms Analysing Algorithms”

public PType prod(PType that) throws IllegalArgumentExcep
Map n = Tools.union(this.names,that.names);
Map nli = new HashMap(), // new local inputs
nlo = new HashMap(), // new local outputs
nri = new HashMap(), // new remote inputs
nro = new HashMap(); // you probably got the idea by

Mult al,ar,bl,br,m; // names as in Mult.radd
for (Iterator i = n.keySet().iterator();i.hasNext();) {
Var v = (Var)i.next();
al = this.getMult(true, v,true);
ar = this.getMult(false,v,true);
bl = that.getMult(true, v,true);
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Behavioural Properties
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o Deadlock-freedom

@ Termination
@ Isolation

@ Determinism
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Determinism Examples

Deterministic System: Coffee Machine
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Determinism Examples

Deterministic System: Coffee Machine
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Non-Deterministic System: Printer
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“Behavioural Type Systems: Algorithms Analysing Algorithms”

Who provides the types?
e Type Checking: The programmer
@ Type Inference: The type system
When to type?
e Static Analysis: "Compile time”

@ Dynamic Checking: Run time
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Behavioural Types

“Behavioural Type Systems: Algorithms Analysing Algorithms”

Who provides the types?
@ Type Checking: The programmer
@ Type Inference: The type system
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Behavioural Types

“Behavioural Type Systems: Algorithms Analysing Algorithms”

Who provides the types?
@ Type Checking: The programmer
@ Type Inference: The type system
When to type?
@ Static Analysis: “Compile time”

@ Dynamic Checking: Run time

Dr. Maxime Gamboni Behavioural Type Systems



Behavioural Properties Type Systems Process Calculi Dependency Analysis Generic Type Systems

Type Systems

Finding/Verifying properties without running the program

My Type Inference System

.
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Type Systems

Generic Type Systems

Finding/Verifying properties without running the program
My Type Inference System
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Type Systems

Finding/Verifying properties without running the program

My Type Inference System
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Type Systems

Finding/Verifying properties without running the program

My Type Inference System
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Process Calculi

“Behavioural Type Systems: Algorithms Analysing Algorithms”

The m-calculus: a tiny concurrent “programming language”.
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Dependency Analysis (1)
“Behavioural Type Systems: Algorithms Analysing Algorithms”

@ Parallel composition fundamental to the m-calculus

P=Py|Py| ... |Pp
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Dependency Analysis (1)
“Behavioural Type Systems: Algorithms Analysing Algorithms”

@ Parallel composition fundamental to the m-calculus

P=Py|Py| ... |Pp

@ Need to analyse one component at a time
{fi-P}—>THr P
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Dependency Analysis (1)
“Behavioural Type Systems: Algorithms Analysing Algorithms”

@ Parallel composition fundamental to the m-calculus

P=Py|Py| ... |Pp

@ Need to analyse one component at a time
{fi-P}—>THr P

@ Need to make assumptions on the environment

M= (ZL«=E)
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Dependency Analysis (2)

Definition (Behavioural Statements)
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Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b(wt'f).(t' c{tF)+f.f)
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Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b(wt'f).(t' c{tF)+f.f)
! .t

bo<T + B = !b(tf)
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Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b(wt'f).(t' c{tF)+f".f)
bp<T + B = b(tf)T
bp<l € =tc(tf).((vq)q|qt]|q.f)
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Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b
bp<T + B = lb(tf).t
bp<l + C = 1c(tf).((vq)q|q.t|q.f)

ap< (T Acp)xap<icp + A|B
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Dependency Analysis (2)

Definition (Behavioural Statements)

ap<(bp Acp) + A = la(tf).b
bp<T + B = lb(tf).t
bp<l + C = 1c(tf).((vq)q|q.t|q.f)

ap<(T Acp)=xap<cp + A|B
aD<1(bD/\J_);aD<1J_ [ A|C
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Captures the essence of dependency analysis
Can be instantiated:

o Write semantic goals

@ Rules parametrised by elementary rules
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Generic Type Systems

Captures the essence of dependency analysis
Can be instantiated:

o Write semantic goals
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Captures the essence of dependency analysis
Can be instantiated:

o Write semantic goals

@ Rules parametrised by elementary rules
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Behavioural Properties

Type Inference Systems: Find properties automatically
The m-calculus: A simple programming language
Dependency Analysis: Reusable types for reusable code

Generic Type Systems: Write an elementary rule, get a type
system for free
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@ Behavioural Properties

@ Type Inference Systems: Find properties automatically
@ The m-calculus: A simple programming language

@ Dependency Analysis: Reusable types for reusable code

(7]

Generic Type Systems: Write an elementary rule, get a type
system for free
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Summary

@ Behavioural Properties
@ Type Inference Systems: Find properties automatically

@ The m-calculus: A simple programming language
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Summary

Behavioural Properties
Type Inference Systems: Find properties automatically

The m-calculus: A simple programming language

Dependency Analysis: Reusable types for reusable code
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Summary

Behavioural Properties
Type Inference Systems: Find properties automatically
The m-calculus: A simple programming language

Dependency Analysis: Reusable types for reusable code

Generic Type Systems: Write an elementary rule, get a type
system for free
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Thank You

Answers to questions are non-isolated, non-deterministic,
non-uniform, active, responsive, deadlock-free, and terminate.
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» Properties

» Future Work
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Types & Multiplicities

Behavioural Statements A, =, ...

A =
AVA‘A+A‘A/\A‘A<1A‘pk‘J_‘T‘p’"
m::=0|1|w|*
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Definition (Selection A v B)
| will either behave like A or like B

A

§

Definition (Branching A + B)

You can make me do A or B
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Choice

Definition (Selection A v B)

| will either behave like A or like B
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Choice

Definition (Selection A v B)

| will either behave like A or like B

Definition (Branching A + B)

You can make me do A or B
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Choice Examples (1)

e Data Encodings

b:=True % 1p(tF).2
b:=False % 1p(tf).f
—_—
o—b(tF)ou’%;
e
If bThen PElse @ % B(wtf).(t.P+£.Q)
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Choice Examples (II)

@ Client-Server Conversations

prod(vs).s(more, done).more(vs, 2).

s(more, done).more(vs,5).

s(more, done).done(vs).s(x).print(x)
/5( more, done)

F\more(s. )=+

I prod(s).po{1,s) | !pol(t,s).s(vmore, done).
(more(s, n).po(t x n, sy + done(s).s(r))
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Algebra

Spatial Operators

Parallel Composition 'y ® 2, Restriction (vx) T, ...

Logical Operators

Equivalence =, Weakening <, Reduction —, ...

Dynamic Operator

Transition Operator I —— (Fw).
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Semantics (Universal)

Definition (Universal Semantics)

A (T; P) typed process is correct wrt. universal semantics

(“I =y P") if, for all transition sequences (I'; P) i)\ (r'; P,
the local component of I being \/;¢; pix, < €;: for all i € | with
ki € U, good,.(pi< &j, (I"; P')) holds.

Dr. Maxime Gamboni Behavioural Type Systems
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Semantics (Existential)

(Abbreviated) Existential Semantics

A typed process (I'; P) is correct (“I' = P"), if 3 a strategy f s.t.
For any sequence

(T P) = (To; Py) - - - L\ (' Pl LN (Fig1; Pig1) -+, let (for
all i) 11; be the label of (I P) — (Fiy1; Pir1).
Then 3 a resource px and n = 0 such that:

@ Vi: (pk=dep(m)) <T;

@ de: (pk<e) < T, and good, (p<e, (Ip; Pn)).

Dr. Maxime Gamboni Behavioural Type Systems
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Type System (Universal)

Vi:Ti b P M P r(X) =0

U-PAR U-REs
F1®F2 l_)C P1|P2 ( ) (I/X)r I—Kj (UXZO')P ( )
Vi: (%=L« =gi) Fr Gi.P;
=g < TR
< AiZe (U-Suwm)

(A Zis Asexc sume({piti.Ze) A V,;ZLi«ZE) Fi X Gi.Pi
' P sub(G)=p obj(G) =%

- (U-PRE)
(p:o; <p’"/\b’”)

() <)

lit #(6) = w (¥bn(G)) ( r

(]

(; Akex Propi(o, G, m, m’) « )) Fxc G.P

©
©
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©
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Type System (Existential)

Vi:li b Pi Tk P T(x)=0
E-PaAr
Mol ke PP ( ) (wx)T +x (vx:0)P

(E-RES)

Vi: (X =i« Zgi) Fx Gi.P;

=g < /\iEEi

(/\i i /\kEIC sumk({p,-},-7EE) A \/,‘ELI < EE) i Zi G,'.P,'
N P sub(G) =p obj(G) =%

(P Lo« p™ A f’ml)
(p#© )
i 4(6) = (1B0(G)) ( T depc(6)
G[X]< (depx(G) A pr)
(; /\kelC propk(Uv G7 m, m/) < )) i G.P

(E-Sum)

(E-PRE)
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Properties

@ A — Activeness

sub(G)a if #(G)=w or m' #

prop G7 0-7 m? ml = .
Al ) T otherwise

R — Responsiveness

D — Determinism (Functionality)
I — Isolation

df — Lock-Freedom

N — Non-Reachability

w — Termination

e 6 6 6 o o
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Properties
@ A — Activeness
@ R — Responsiveness
bj(G if Gi input
propR(, G, m ) = sub(G)ge | 7O TG s anine
alobj(G)] if G is an output
@ D — Determinism (Functionality)
@ | — Isolation
o df — Lock-Freedom
@ N — Non-Reachability
@ w — Termination
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Properties

@ A — Activeness

@ R — Responsiveness

@ D — Determinism (Functionality)

def L if xe{m m'} and w¢ {m m'}

o,G,mm) = {____
2o ) sub(G)p  otherwise

_. def } L if =has concurrent environment p;
eo({pi}i,Z) = .
T  otherwise
| — Isolation
df — Lock-Freedom
N — Non-Reachability
w — Termination
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Properties

A — Activeness

°

@ R — Responsiveness

@ D — Determinism (Functionality)
°

| — Isolation

ng(U: G7 m, ml) = SUb(G)I
df — Lock-Freedom
N — Non-Reachability

o — Termination

(]
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Properties

@ A — Activeness
@ R — Responsiveness
@ D — Determinism (Functionality)
@ | — Isolation
o df — Lock-Freedom
propgs(G, o, m, m/) = ProcCygs=d SUb(G)A
@ N — Non-Reachability
@ w — Termination
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Properties
@ A — Activeness
@ R — Responsiveness
@ D — Determinism (Functionality)
o | — Isolation
o df — Lock-Freedom
@ N — Non-Reachability

propn (G, o, m, m’) def sub(G)n< L

w — Termination
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Properties

A — Activeness

R — Responsiveness

D — Determinism (Functionality)
I — Isolation

df — Lock-Freedom

N — Non-Reachability

w — Termination

e 6 6 6 o6 o o

propn (G, o, m, m') def sub(G)n< L A Tn<1sub(G)y
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Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

Based on contextual semantics?

“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q

The definition is circular!

Implicit definition?

“The set of correct typed processes is the largest that satisfies
the above”

There are many solutions!

Stricter implicit definition?

“The set of correct typed processes is the intersection of all
those that satisfy the above”

The intersection is empty!

To be continued . ..
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Universal Soundness

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q
The definition is circular!
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Universal Soundness
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Universal Soundness

@ Based on transition sequences?
Semantic Predicates aren't transition based! (or are they?)

@ Based on contextual semantics?
“Ni< Ay E PifVQst. Ao - Q: Ay E P|Q
The definition is circular!
@ Implicit definition?
“The set of correct typed processes is the largest that satisfies
the above”
There are many solutions!
@ Stricter implicit definition?
“The set of correct typed processes is the intersection of all
those that satisfy the above”
The intersection is empty!
@ To be continued ...
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Existential Soundness

Structural Liveness Strategies

p = mo ‘ [ ‘

§ == +p | [s]
mou=(lp) | (e) | (olp)
S = p1t+p2+p3...

[: Guard reference
e: Environment
([|p): Make I and p communicate.
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Future Work

Generic Universal Soundness Proof
Recursivity and Bounded Channels.

Channel Type Reconstruction.

e 6 o6 o

Software Implementation.
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